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Introduction

The concepts of bordism and cobordism is over 100 years old. In the
19th century, Henri Poincaré introduced bordism, hoping to de�ne (ordinary)
homology purely in terms of manifolds.

In the early 50's of the last century, bordism appeared in homotopy the-
ory. In 1950, Lev Pontrjagin used framed bordism to gain informations about
higher homotopy groups. Shortly after that, René Thom used homotopy
theory to classify (oriented) compact manifolds up to (oriented) bordism.

Then, in the 60's, Michael Atiyah and Friedrich Hirzebruch studied bor-
dism intensively as a generalised homology theory.

Later, in the Eighties, bordism showed up in modern quantum physics.
Indeed, many invariants that arise in quantum �eld theory turn out to be
invariant under a certain bordism relation. Having this in mind, it is not too
surprising that Edward Witten asked how

ΩPin−

4 (BO(2))

looks like. The answer to this question is the purpose of this thesis.
The text is structured in the following way. The �rst of three chapters

studies the fundamental objects of this thesis. After a brief recapture of the
(S)Pin groups, we discuss Pin structures on manifolds. In particular, we
will see that Pin structures descend from manifolds to their boundaries in a
unique way, allowing the de�nitions of Pin bordism groups. We will also give
a reduction to Spin bordism and calculate the needed Pin bordism coe�cient
groups.

The second chapter provides information about the topological space
BO(2). We will give a cell decomposition and use that to determine the
homology groups of BO(2). In addition, we will determine its unoriented
bordism group ΩO

∗ (BO(2)).
In the third and �nal chapter, we will present the answer to the motivating

question. In sections 3.2 and 3.3, we will show that

ΩPin−

4 (BO(2)) ∼= Z2
2.

Additionally, we will calculate all other Pin bordism groups up to degree
4. We will do this not only for BO(2), but also for BSO(2) and BZ2, and
provide geometric representatives of the generators.





Chapter 1

The Pin groups and its bordism

The aim of this chapter is to give a comprehensive introduction into the
essential concepts of this thesis, most notably Pin structures and bordism
groups. Since the Pin groups are not as famous as their little brothers,
the Spin groups, we will review their construction in the �rst section and
elementary properties will be derived. In section 1.2 we will study how and
when they arise on bundles. Although this does seem to be very spectacular,
the most important result of this section is possibly Theorem 1.2.17 which
says that there is a canonical bijection between Pin structures and stable Pin
structures. This allows us to de�ne the Pin bordism groups in section 1.3.
Since Pin and Spin are closely related, one should expect that their bordism
theories are closely related and indeed, Pin bordism can be completely de-
scribed in term of Spin bordism. This reduction is presented in section 1.4.
Finally, in section 1.5 we calculate the Pin bordism coe�cient groups of our
interest with the help of the Atiyah-Hirzebruch spectral sequence.

1.1. Construction of the Pin groups

The purpose of this section is to give a short reminder of the theory of Pin
and Spin groups and to �x some notation. We will only cover the information
we need for this thesis, so the material presented here is only the tip of the
iceberg. For further information see [LM89]. Nevertheless, the presentation
of the material will be (nearly) self contained. We construct the Pin and Spin
using covering theory and classify all Spin and Pin groups up to isomorphism
of topological groups. Then, a concrete model using Cli�ord algebras will
be provided, which we will later use for calculations. We assume that the
reader is familiar with the foundations of covering theory on a level presented
in [SZ94, Chapter 5]. In particular, the lifting theorem for coverings should
be known.

Theorem 1.1.1. Let G be a path connected topological group and p : (G̃, 1)→
(G, 1) be a covering with path connected total space. Then there is a unique

group structure on G̃ with 1 as neutral element such that p becomes a group

homomorphism. Furthermore, two equivalent covers are also isomorphic as

groups.

Proof. Since every topological group is an H-space, its fundamental group
will be commutative. Let us denote the continuous group multiplication of
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G with µ. Under the isomorphism π1(G×G) ∼= π1(G)⊕ π1(G) the induced
map µ∗ corresponds to the addition on π1(G). In other words,

µ∗([f × g]) = [f ] + [g].

This implies

im (µ ◦ p× p)∗ = im p∗ + im p∗ = im p∗.

Therefore, we obtain a unique lift for µ ◦ p × p, i.e. a continuous map µ̃ :
G̃× G̃→ G̃ sending (1, 1) to 1 and making the diagram

G̃× G̃ µ̃ //

p×p
��

G̃

p

��
G

µ // G

commutative. We need to verify that this lift satis�es the axioms of a group
multiplication. For associativity, observe that µ̃ ◦ (id × µ̃) and µ̃ ◦ (µ̃ × id)
are lifts of µ ◦ (id × µ) = µ ◦ (µ × id) sending (1, 1, 1) ∈ G̃3 to 1 ∈ G̃. By
uniqueness, these maps must be equal.

To see that 1 ∈ G̃ is a left unit, observe that g 7→ µ̃(1, g) covers idG,
which can be rewritten as g 7→ µ(1, g), and sends 1 ∈ G̃ to 1. By uniqueness,
g 7→ µ̃(1, g) is the identity on G̃ and therefore 1 a left unit.

The construction of the (left) inverse map runs as follows. Consider the
inverse map ι : G → G, g 7→ g−1. On the fundamental group, this map
induces ι∗ = −idπ1(G). Therefore, im (i ◦ p)∗ = im p∗, and ι ◦ p lifts to a
unique map ι̃ : G̃ → G̃ satisfying ι̃(1) = 1. Now, the map g 7→ µ̃(ι̃(g), g)
covers g 7→ µ(ι(g), g) = 1 and sends 1 to 1. Therefore, it must be the
constant map sending everything to 1, and this implies that ι̃ sends every
element to its left inverse.

Now, for i ∈ {1, 2}, let pi : (G̃i, 1) → (G, 1) be two equivalent coverings
and ϕ : G1 → G2 be a continuous map covering the identity with ϕ(1G1) =
1G2 . Since ϕ◦µ1 and µ2 ◦(ϕ×ϕ) cover µ and satisfy ϕ◦µ1(1, 1) = 1G2 = µ2 ◦
(ϕ×ϕ), we conclude by uniqueness that both maps are equal. Therefore, the
cover-equivalence ϕ is a group homomorphism. Since ϕ is a homeomorphism,
it is an isomorphism of topological groups.

Recall that π1(SO(2)) ∼= Z and that π1(SO(n)) ∼= Z2 for n ≥ 3, so up
to covering equivalence there is only one connected two-sheeted covering of
SO(n). By applying the previous theorem to this covering, we prove the
existence of the Spin group, de�ned in the next theorem.

Theorem 1.1.2 (Existence of the Spin group). Up to isomorphism of to-

pological groups there is a unique topological group Spin(n) satisfying the

following properties.

1. λ : (Spin(n), 1)→ (SO(n), 1) is a two-sheeted covering.

2. λ is a group homomorphism

3. Spin(n) is connected. �
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Corollary 1.1.3. If n ≥ 3, then Spin(n) is simply connected, so it is the

universal covering of SO(n).

The proof for uniqueness uses that a lift of a given continuous map is
uniquely determined by the value of a single point, as long as the total space
of the covering is path connected. So if we generalise this construction to
O(n), the total space will be non-connected and we cannot expect to have
a unique group structure. Indeed, it will turn out that up to isomorphism
there will be two di�erent group structures satisfying the above properties,
essentially because a set of four elements can be endowed with two di�erent
group structures. The next theorem makes this more precise.

Theorem 1.1.4. Up to isomorphism of topological groups there exist two

topological groups Pin−(n) and Pin+(n) satisfying the following properties:

1. λ : Pin±(n)→ O(n) is a two-sheeted covering.

2. λ is a group homomorphism.

3. λ−1(SO(n)) = Spin(n).
The groups Pin+(n) and Pin−(n) can be distinguished by the following prop-

erty. Let r ∈ O(n) \ SO(n) be any re�ection at some hyperplane1. Then

λ−1({id, r}) ⊆ Pin−(n) is a subgroup isomorphic to Z4 and λ−1({id, r}) ⊆
Pin+(n) is isomorphic to Z2

2.

Proof. We �rst discuss the question of existence. As sets we de�ne Pin±(n)
to be Spin(n) × Z2 and λ := λSpin × id. Any r as above de�nes a group
homomorphism r : Z2 → O(n) via r(−1) = r, so it can be used to identify
O(n) as a semi-direct product of SO(n) and Z2; more precisely O(n) ∼=
SO(n) ocr Z2. Using the lifting theorem for coverings it is easy to see that
the conjugation with r is a homomorphism cr : Z2 → Aut(SO(n)), which lifts
to a homomorphism c̃ : Z2 → Aut(Spin(n)).

We de�ne Pin+(n) to be Spin(n) of Z2. It follows immediately from the
construction that λ is a group homomorphism. The �rst and third condition
are also obviously satis�ed.

For Pin−(n), we de�ne the group multiplication µPin : Pin−×Pin− → Pin−

via

µPin ((x, 1), (y, 1)) = (xy, 1)

µPin ((x,−1), (y, 1)) = (xf(−1)(y),−1)

µPin ((x, 1), (y,−1)) = (xy,−1)

µPin ((x,−1), (y,−1)) = (−xf(−1)(y), 1).

This product is associative for the same reason the product of a semi-direct
product is associative2. One easily checks that the neutral element is given
by (1, 1) and the inverse element of (x,m) is given by (mc̃(m)(x−1),m). Since
µPin− ((x1,m1), (x2,m2)) and µPin+ ((x1,m1), (x2,m2)) may only di�er by a
sign in the �rst component, the covering map λ is also a group homomorphism
for the Pin−(n) group structure. As in the Pin+ case, the �rst and third

1 In algebraic terms: r2 = 1 and r has signature (n− 1, 1).
2 If you are uncomfortable with this argument Theorem 1.1.10 gives the existence and

the proof of uniqueness below shows that the product has to be de�ned in this way.
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condition are trivially satis�ed. Furthermore, one sees that λ−1({id, r}) =
{±1,±1}. In the Pin− case, this set is isomorphic to Z4 with generator (1, 1),
while, in the Pin+ case, this set is isomorphic to Z2

2 with (1, 1) and (1,−1)
as generators.

Now we turn to uniqueness. For i ∈ {1, 2} let Gi
λi−→ O(n) be two

groups satisfying the three conditions in the statement and r ∈ O(n) be
any re�ection at some hyperplane.

First, observe that the isomorphism class of the subgroup λ−1
i ({id, r})

does not depend on the choice of r. Indeed, let r2 be another re�ection at
a hyperplane. Since r and r2 are symmetric, orthogonal matrices having
the same signature, we can �nd a g ∈ O(n) such that grg> = r2. By
replacing g with ḡ := g · r if necessary, we may even assume that g is an
orientation-preserving isometry. The conjugation cg lifts to an automorphism
mapping λ−1({id, r}) bijectively to λ−1({id, r2}); therefore, both subgroups
are isomorphic.

From the third condition, we conclude that Spin(n) ⊆ Gi is an open
and closed subgroup. Thus, it is a connected component containing the unit
element, and therefore normal in Gi. Since Gi/Spin(n) ∼= Z2, the groups
decompose Gi = Spin(n)tSpin(n)·r̃i, where λi(r̃i) =: r is a re�ection at some
hyperplane. In other words, any element x ∈ Gi has a unique decomposition
x = g · r̃i with g ∈ Spin(n).

De�ne ϕ : G1 → G2 by ϕ|Spin(n) = id and g · r̃1 7→ g · r̃2 on the other
component. This gives rise to a group homomorphism because for any g, h ∈
Spin(n), we have

ϕ(gh) = gh = ϕ(g)ϕ(h),

ϕ(g · hr̃1) = g · hr̃2 = ϕ(g)ϕ(hr̃1),

ϕ(gr̃1 · h) = ϕ((gr̃1hr̃1
−1)r̃1) = (gr̃1hr̃1

−1)r̃2,

(1)
= gr̃2hr̃2

−1 · r̃2 = ϕ(gr̃1)ϕ(h),

ϕ(gr̃1hr̃1) = gr̃1hr̃1
(2)
= gr̃2hr̃2 = ϕ(gr̃1)ϕ(hr̃1).

Equation (1) holds because by the second condition, the maps h 7→ r̃1hr̃1

and h 7→ r̃2hr̃2 are lifts of cr with r̃i2 = −1 in the Pin− case and r̃i2 = 1 in
the Pin+ case. So they must be equal. The same argument shows cr̃1 = cr̃2 ,
so equation (2) also holds.

Since ϕ is bijective, it is the isomorphism we are looking for.

The previous de�nitions for Spin and Pin± are rather abstract and not
very useful in concrete calculations. A concrete realisation is given in terms
of Cli�ord algebras. We only give the de�nitions and state the theorems
relevant for this thesis. Proofs can be found in the excellent literature about
this topic, like [ABS64] or [Mei13].

De�nition 1.1.5 (Cli�ord algebra). Let (V, q) be a quadratic vector space,
meaning q is a quadratic form on V . The associated Cli�ord algebra Cl(V, q)
is the associative, unital algebra uniquely determined by the following uni-
versal property:
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Any linear map f : V → A into an associative algebra A with unit, that
additionally satis�es f(v)2 = q(v) · 1A, extends uniquely to an algebra ho-
momorphism Cl(f) : Cl(V, q) → A. In terms of diagrams, this means that
the diagram given by the solid arrows can be commutatively extended by the
dotted arrow

V �
� //

f %%

Cl(V, q)

Cl(f)
wwA.

Further, we denote Cln,0 := Cl(Rn,−|| · ||2) and Cl0,n := Cl(Rn, || · ||2).

Of course, this de�nition makes sense over any �eld k with char(k) 6= 2,
but in this thesis we restrict ourselves to the special case k = R.

The universal property of the Cli�ord algebra has several consequences.
For example, any linear map f : (V1, q1) → (V2, q2) respecting the quad-
ratic forms, i.e. f ∗(q2) = q1, extends uniquely to an algebra homomorphism
Cl(f) : Cl(V1, q1)→ Cl(V2, q2). Furthermore, this assignment is functorial.

De�nition 1.1.6 (Transposition). De�ne on Cl(V, q) the new product x ?
y := y ·x. The inclusion ι : V ↪→ Cl(V, q) still satisfy ι(v)2 = q(v) ·1, so there
is a unique algebra homomorphism (·)t : (Cl(V, q), ·) → (Cl(V, q), ?), which
also can be seen as a linear map from the Cli�ord algebra (CL(V, q), ·) to
itself.

De�nition 1.1.7 (Parity operator, even and odd elements). The parity op-
erator Π is de�ned to be Cl(−id). By functoriality, Π2 = id, so it is an
involution. We denote the denote the eigenspace to the eigenvalue 1 and −1,
with Cl0(V, q) and Cl1(V, q), respectively. An element x ∈ Cl(V, q) is called
even if it lies in Cl0(V, q), and odd if it lies in Cl1(V, q). It is called of pure
degree if it is even or odd. To an element x of pure degree we can assign its
degree, denoted by |x|, which is zero, if x is even, and one, if x is odd. The
Cli�ord algebra can be (additively) decomposed into an even and odd part.
The set of even elements form a subalgebra.

De�nition 1.1.8 (Norm). The norm N : Cl(V, q) → Cl(V, q) is de�ned by
N(x) := Π(xt)x = (Π(x))tx. It can be shown that this map actually takes
values in the real numbers and is multiplicative [ABS64].

De�nition 1.1.9. Let % : Cl(V, q)× → Aut(Cl(V, q)) be given by %(x)(y) =
Π(x)yx−1. De�ne Γ := {x ∈ Cl(V, q) | %(V ) = V }. This is a subgroup of
Cl(V, q)×.

Having introduced the previous notation, we are �nally able to describe
the Pin± and Spin groups in terms of the Cli�ord algebras Cln,0 and Cl0,n.

Theorem 1.1.10 ([ABS64]). We have the following isomorphisms of groups.

1. Pin+(n) ∼= {x ∈ Γ|N(x) = 1} ⊆ Cl0,n
2. Pin−(n) ∼= {x ∈ Γ|N(x) = 1} ⊆ Cln,0
3. Spin(n) ∼= {x ∈ Γ|N(x) = 1,Π(x) = x}

Furthermore, the groups on the right-hand-side are multiplicatively generated

by Rn, considered as a subset of the appropriate Cli�ord algebra. Therefore,
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an element is in Spin if and only if it is in Pin and a product of an even

number of vectors.

The following observation relates Cln,0 and Cl0,n. As mentioned above,
a Cli�ord algebra, considered as a vector space, is generated by elements of
pure degree. We de�ne on Cln,0 a new product given by x∗y := (−1)|x||y|x ·y.
It is easily veri�ed that this product is associative. Now ι : Rn ↪→ (Cln,0) is
a linear map satisfying ι(v)2 = (−1)v2 = ||v||2 yielding a unique algebra
homomorphism γ+ : Cl0,n → Cln,0. The same construction works on Cln,0,
so we get a unique algebra homomorphism γ− : Cln,0 → Cl0,n. We conclude
γ+ ◦ γ− = idCln,0 because it is an algebra homomorphism extending ι : Rn ↪→
Cl0,n. Analogously, we get γ− ◦ γ+ = idCl0,n . Consequently, we have proven
the following lemma.

Lemma 1.1.11. Cln,0 ∼= (Cl0,n, ∗) and Cl0,n ∼= (Cln,0, ∗), viewed as algebras.

Let us close this section with the following remarks. The construction
for the Spin and Pin± groups we discussed here was purely topological; the
only information we used for the construction were number of path connected
components or informations encoded in the fundamental group of the base
space. In fact, Theorem 1.1.1 can also be applied to GL(n)+, which has
the same homotopy type as SO(n) (the polar decomposition yields a strong
deformation retract GL(n) → SO(n)). Therefore, Theorem 1.1.4 can be
generalised to GL(n). We denote the corresponding groups with GSpin(n)
and GPin±(n), respectively. These groups actually play a minor role in this
thesis. However, they are the underlying reason why the existence of a Pin±

is independent of the choice of a Riemannian metric. This will be explained
in the next section.

1.2. Pin structures on bundles

Having introduced the Pin groups, we are in the position to study under
which condition a vector bundle possesses a Pin structure. Our base spaces
are assumed to be at least paracompact, but the developed theory here will
be applied to CW-complexes or compact manifolds only. A great deal of this
section is inspired by section 1 of the very worth reading paper [KT90b].

De�nition 1.2.1 (Pin structures). Let O → B be a principal O(n)-bundle.
A Pin± structure on O is a reduction to a principal Pin±-bundle. That
means that there is a principal Pin±-bundle P → B and a λ-equivariant
map ρ : P → O, i.e. ρ(p · g) = ρ(p) · λ(g), making the following diagram

P
ρ //

��

O

��
B

id // B

commutative.
A vector bundle E → B possesses a Pin± structure if there is a Rieman-

nian metric g on E such that the corresponding orthogonal frame bundle
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O(E) := {(Rn, 〈·, ·〉) p−→ (Ex, gx) | p isometry} → B possesses a Pin± struc-
ture.

A smooth manifold M possesses a Pin± structure if its tangent bundle
possesses a Pin± structure.

De�nition 1.2.2 (Equivalence of Pin structures). We call two Pin± struc-
tures (Pi, ρi) on O equivalent if there is an equivariant map θ : P1 → P2

making the following diagram

P1
θ //

��

P2

��
O

id // O

commutative.
More generally, a map Φ: O1 → O2 between two principal O(n)-bundles

is called Pin±-structure-preserving, if Φ∗ρ2 : Φ∗P2 → O1 and ρ1 : P1 → O1

are equivalent structures.

Let us emphasise that the equivariant map ρ is part of the structure and
that, although every structure equivalence is a map of principal Pin±-bundles,
the converse does not hold in general. In particular, di�erent equivariant
maps ρi : P → O may yield di�erent Pin± structures. An example is given
below, see Example 1.2.11.

Since any principal bundle can be represented in terms of 1-cocycles (see
Theorem A.1.4), it is desirable, not only from a philosophical perspective
but also from a practical one, to have an equivalent descriptions in terms of
transition functions. A criterion is given in the next two lemmas.

Lemma 1.2.3. A principal O(n)-bundle O → B has a Pin± structure if

and only if there is a Pin±-bundle P → B, an open covering U = (Uα)α∈A
together with trivialisation maps (Ψα)α∈A for P and (Φα)α∈A for O, such that
the corresponding transition functions are related by

gOαβ = λ(gPαβ),

where λ : Pin±(n)→ O(n) is the covering map.

Proof. "⇐" We de�ne the equivariant map ρ locally via

PUα
ρ|Uα //

Ψα
��

OUα

Φα
��

Uα × Pin±(n)
id×λ

// Uα ×O(n).

This map is well de�ned because, for every p ∈ PUα ∩ PUβ , we have

Φβ ◦ ρ|PUα (p) = Φβ ◦ Φ−1
α ◦ (id× λ) ◦Ψα(p)

= (id× gOβα) ◦ (id× λ) ◦Ψα ◦Ψ−1
β ◦Ψβ(p)

= (id× gOβα) ◦ (id× λ) ◦ (id× gQαβ)(π(p), p̄β)

= (id× λ) ◦Ψβ

= Φβ ◦ ρ|PUβ (p).
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Note that ρ is equivariant because all local restrictions are so.
"⇒" Let P

ρ−→ B be a Pin± structure of O → B and U = (Uα)α∈A
an open covering of B, over which P and O trivialise simultaneously. The
local trivialisations for P are denoted by Ψα, the ones for O by Φα. Due
to equivariance we have Φα ◦ ρ|PUα ◦ Ψ−1

α (u, g) = (u, θα(u) · λ(g)), where
θα : Uα → O(n) is the map given by Φα ◦ ρ|PUα ◦ Ψ−1

α (u, 1). De�ne new
trivialisations for OUα by Φ′α := (id× λ) ◦Φα. It is easy to see that they are
indeed equivariant homeomorphisms OUα → Uα ×O(n). Little substitutions
show Φ′α ◦ ρ|Uα ◦Ψ−1

α (u, q) = (u, λ(g)).

Note that in the previous lemma we adapted the trivialisations of the
orthogonal bundle O to the given bundle P . In practice, we would like to
adapt the trivialisations of the Pin± structure to a given set of trivialisations
of the given O(n)-bundle. In other words, to a given O(n)-cocycle we want to
�nd a nice Pin±-cocycle covering it. The next lemma gives a positive result in
the case the base space can be covered by 'good' open subsets, namely path
connected and simply-connected. When the base space is a CW-complex
or a manifold, we always can �nd such a covering because they are locally
contractible.

Lemma 1.2.4. Let P
ρ−→ O be a Pin± structure and (Uα)α∈A a covering of

'good' open subsets over which P and O trivialises. Let a set of trivialisation

maps Φα : PUα → Uα×O(n) be given. Then we can �nd a set of trivialisation

maps Ψα : PUα → Uα × Pin±(n) making the following diagram

PUα
ρ|Uα //

Ψα
��

OUα

Φα
��

Uα × Pin±(n)
id×λ

// Uα ×O(n)

commutative.

Proof. Let Ψ̃α : PUα → Uα × Pin±(n) be a set of trivialisation maps. Using
the same notation as in the proof of the previous lemma, we have Φα◦ρ|PUα =
(id× θα(·) · λ(·)). Since Uα is path connected and simply-connected, the map
θ : Uα → O(n) has a lift θ̃α → Pin±(n). Now,

Ψα :=

(
id×

(
θ̃α(·)

)−1
)
◦ Ψ̃α

de�nes an equivariant homeomorphism. It is straightforward to verify, that
those Ψα make the diagram in the assertion commutative.

Lemma 1.2.5. Let Pi
ρi−→ O be two Pin± structures on O, {oαβ} a cocycle

representing O, and {piαβ} cocycles representing Pi and satisfying the relation
λ(piαβ) = oαβ.

Then P1 and P2 are equivalent Pin− structures if and only if there is a

0-cocycle {xα} with values in Z2 = kerλ such that

p1
αβ = x−1

α p2
αβxβ.
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Proof. "⇒" Let θ : P1 → P2 be the structure equivalence, (Uα,Φα) the trivi-
alisations of O yielding the 1-cocycle {oαβ}, and (Uα,Ψ

i
α) the trivialisations

of Pi giving {piαβ}. Further, de�ne the family of Pin±(n) valued function xα
via

id× xα = Ψ2
α ◦ θ ◦ (Ψ1

α)−1.

These functions actually take values in kerλ because of

id× λ(xα) = ρ2 ◦ Φα ◦ θ ◦ (Ψ1
α)−1

= Φα ◦ id ◦ ρ1 ◦ (Ψ1
α)−1

= Φα ◦ (Φα)−1 = id× id.

Hence, on Uαβ = Uα ∩ Uβ we have the identity

id× p1
αβ = Φα ◦ (Φβ)−1 = Ψ1

α ◦ θ−1 ◦ θ ◦ (Ψ1
β)−1

=
(
Ψ1
α ◦ θ−1 ◦ (Ψ2

α)−1
)
◦
(
Ψ2
α ◦ (Ψ2

β)−1
)
◦
(
Ψ2
β ◦ θ ◦ (Ψ1

β)−1
)

=
(
id× x−1

α

)
◦
(
id× p2

αβ

)
◦ (id× xβ)

= id×
(
x−1
α ◦ p2

αβ ◦ xβ
)
.

"⇐" De�ne θ : P1 → P2 locally de�ned by

θ|Uα =
(
Ψ2
α

)−1 ◦ id× xα · ◦Ψ1
α|Uα .

This gives an isomorphism of (abstract) Pin± bundles. Since xα lies in the
kernel of λ, the map θ covers the identity because it does so locally by
construction.

The previous lemmas provide the necessary tools to work out some ele-
mentary examples.

Example 1.2.6 (Pin structures on line bundles). Let L → B be a real line
bundle over a CW-complex or a manifold. Choose a Riemannian metric and
consider its associated O(1)-principal bundle of orthonormal frames O(L).

We claim that O(L) has a Pin+(1) structure. Indeed, let {gαβ} be a set
of transition functions representing O(L). We de�ne a lift hαβ : Uα ∩ Uβ →
Pin+(1) given by

hαβ(u) =

{
e1, if gαβ = −1 ∈ O(1),

1, if gαβ = 1 ∈ O(1),

where e1 denotes the standard basis of R ⊆ Cl0,1. Clearly, λ(hαβ) = gαβ, so
it remains to show that the family hαβ satisfy the cocycle condition. Since
gαβgβγgγα = 1, it follows that precisely zero or two out of these three trans-
ition functions are not the identity. However, since e2

1 = 1 and Pin+(1) is
commutative, both cases yields hαβhβγhγα = 1. Therefore, the cocycle {hαβ}
gives a Pin+(1) structure on O(L) due to Lemma 1.2.3.

Example 1.2.7. For any line bundle L → B, the three dimensional vector
bundle 3L := L⊕L⊕L has a Pin−(3) structure. Indeed, if O(L) is represented
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by the transition functions {gαβ}, then O(3L) is represented by Gαβ = gαβ ·
idR3 . De�ne hαβ : Uα ∩ Uβ → Pin−(3) via

hαβ(u) =

{
1, if gαβ(u) = 1 ∈ O(1),

e1e2e3, if gαβ = −1 ∈ O(1),

where {ei} denotes the standard basis of R3 ⊆ Cl3,0. Since e1e2e3 ·ek ·e3e2e1 =
−ek for every k ∈ {1, 2, 3}, we conclude that hαβ is a lift of Gαβ. From
(e1e2e3)2 = 1 we conclude as in the previous example that {hαβ} satisfy the
cocycle condition. Thus, 3L possesses a Pin−(3) structure by Lemma 1.2.3.

Example 1.2.8 (oriented vector bundles). An oriented vector bundle E → B
of dimension n possesses a Pin± structure if and only if it possesses a Spin(n)
structure. Indeed, choose a set of local trivialisations over a good open cover
(Uα,Φα)α∈A (we assume that B is either a CW-complex or a manifold), such
that the corresponding trivialisation functions take values in SO(n). By
Lemma 1.2.4 we can �nd local trivialisations for the given Pin± structure
such that the corresponding transition functions hαβ are related through
gαβ = λ(hαβ). But this implies that hαβ takes values in Spin(n) and therefore
we have a reduction to a Spin(n)-principal bundle. This is precisely the
de�nition of having a Spin(n) structure.

On the other hand, let ρ : PSpin(n) → O(n) be a Spin(n) structure. Then

ρ× id : PSpin(n) ×Spin(n) Pin±(n)→ O(E)

is a Pin± structure on E.

Example 1.2.9 (Spin structures on the circle). Let SO(S1) = S1 × {e} be
the bundle of oriented orthonormal frames. There are two di�erent Spin(1)
structures on SO(S1). The �rst one is the trivial Spin(1) structure

id× λ : S1 × Spin(1)→ S1 × SO(1)

and the second one is given by the connected two sheeted covering of S1,

(·)2 : S1 → S1,

z 7→ z2.

These structures are obviously non-equivalent, because the second one is
while the trivial one is not. The circle endowed with the non trivial Spin(1)
structure is denoted by S1

Lie.

Now we want to determine the obstruction for existence of a Pin± struc-
ture. To this end we use a generalisation of Čech-cohomology to non-abelian
groups. Its de�nition and properties can be found in the appendix, see The-
orem A.1.4.

Theorem 1.2.10 (Obstruction for Pin structures). Let E → B be a vector

bundle over a paracompact base space and wi be the i-th Stiefel-Whitney class.

Then E possesses

• a Pin+ structure if and only if w2(E) = 0
• a Pin− structure if and only if (w2 − w2

1)(E) = 0.



1.2. Pin structures on bundles 17

In particular, the property of possessing a Pin± structure does not depend on

the choice of the Riemannian metric.

If E possesses a Pin± structure and if B is a CW-complex or a mani-

fold, then H1(X,Z2) = Ȟ(X,Z2) acts simply and transitively on the set of

equivalence classes of Pin± structures.

Proof. The short exact sequence

1 // Z2
// Pin±(n) λ // O(n) // 1

gives rises to a long exact sequence

. . . // H1(B,Z2) // H1(B,Pin±)
λ∗ // H1(B,O(n)) δ1 // H2(B,Z2)

since Z2 is central in Pin±(n). Any O(n)-valued 1-cocycle corresponds to
a principal O(n)-bundle. Thus, for every x ∈ H1(B,O(n)), there exists a
classifying map f : B → BO(n) such that f ∗EO(n) = x and we have the
following commutative diagram

. . . // H1(B,Pin±(n))
λ∗ // H1(B,O(n))

δ1± // H2(B,Z2)

. . . // H1(BO(n),Pin±(n))

f∗

OO

λ∗ // H1(BO(n),O(n))

f∗

OO

δ1± // H2(BO(n),Z2)

f∗

OO

with exact rows. It is well known that H2(BO(n),Z2) ∼= Z2[w1, . . . , wn],
considered as graded rings. Therefore δ1

±(EO(n)) = µ±1 w
2
1 + µ±2 w2 is the

universal obstruction for a Pin± structure. We determine the coe�cients by
considering special examples.

Firstly, observe that µ±2 must not be zero, otherwise every oriented vector
bundle would possess a Spin structure, which is known to be false. For
example, the universal bundle over BSO(2) cannot carry a Spin(2) structure.
Next we conclude from Example 1.2.6 that µ+

1 = 0, because there exists
non-orientable line bundles, like the tautological line bundle over RP 2. Recall
that for every line bundle L, the vector bundle 3L possesses a Pin− structure.
Since w2(3L) = 3w1(L)2 = w1(L)2 and w1(3L)2 = 32w1(L)2 = w1(L)2, we
conclude (w2−w2

1)(3L) = 0. But, for the tautological line bundle γ2 → RP 2,
we know w1(γ2) 6= 0, and derive therefore µ−1 6= 0.

Summarising: We have deduced that δ1
− = w2 + w2

1 and that δ1
+ = w2.

A very nice way to see that the existence of a Pin± structure is independ-
ent of the Riemannian metric is to use the generalised Pin group from the
previous section. From the commutative diagram

H1(B,Pin±(n))

incl∗
��

λ∗ // H1(B,O(n))

incl∗
��

δ1± // H2(B,Z2)

id∼=
��

H1(B,GPin±)
λ∗ // H1(B,GL(n))

∆1
± // H2(B,Z2)

with exact rows we conclude that any reduction O(E) ⊆ GL(E) carries a
Pin± structure if and only if GL(E) carries a GPin± structure. But the
latter is independent of a Riemannian metric.
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Now let O(E) → B be represented by the cocycle {gαβ}. The action
of H1(B,Z2) = Ȟ1(B,Z2) on the equivalence classes of Pin± structures is
given as follows. Let x ∈ Ȟ1(B,Z2) be represented by the Z2-valued cocycle
{xαβ} and a Pin± structure P of O(E) be represented by {hαβ} such that
λ(hαβ) = gαβ (after a restriction to a re�nement of 'good' open subsets, we
may assume that all three di�erent cocycles live on the same domain). Then
the action is given by x.P := P ′, where P ′ is the unique Pin± structure
represented by {xαβ ·hαβ}. Note that {xαβ ·hαβ} is a cocycle, since xαβ takes
values in the centre of Pin±(n).

This indeed de�nes an action because (x+y).P = {xαβyαβhαβ} = x.(y.P )
and 0.P = {1αβhαβ} = {hαβ} = P .

One can see that this action is free by the following argument. Assume
that x = {xαβ} ∈ Ȟ1(B,Z2) maps P represented by {hαβ} to an equivalent
structure P ′. Lemma 1.2.5 implies that the cocycles {xαβhαβ} and {hαβ} are
cohomologous by a coboundary with values in ker(λ). In other words, there
is a family of continuous ker(λ)-valued functions {fα} such that xαβhαβ =
fαhαβf

−1
β . Since ker(λ) is central in Pin±, this is equivalent to {xαβ} =

{fαf−1
β }. Thus, x is itself a coboundary, so x = 0 ∈ Ȟ1(B,Z2).
To verify transitivity, let P and P ′ be two Pin± structures on O(E).

Again, we pick trivialisations for O(E), P , and P ′ such that the corresponding
transition function of these bundles are related by gαβ = λ(hαβ) = λ(h′αβ).
Then {xαβ} := {hαβ(h′αβ)−1} is a set of continuous functions Uα ∩ Uβ →
ker(λ). We need to verify that {xαβ} satis�es the cocycle condition. This
follows from

1 = hαβhβγhγα = xαβh
′
αβxβγh

′
βγxγαh

′
γα

= xαβxβγxγαh
′
αβh

′
βγh

′
γα

= xαβxβγxγα.

This shows x.P ′ = P and we are done.

This theorem has many implications. For instance, there are Spin struc-
tures on a given SO(n) bundle which are not equivalent, but isomorphic as
abstract Spin bundles. This observation extends to Pin± bundles.

Example 1.2.11. Since H1(S1,Z2) ∼= Z2, there are two non-equivalent Spin(2)

structure on the trivial bundle S1 × SO(2)
pr1−−→ S1. However, since Spin(2)

is connected, we have π1(BSpin(2)) ∼= π0(Spin(2)) = 0. By the universal
property of BSpin(2), every Spin(2)-principal bundle on S1 is necessarily
trivial.

Corollary 1.2.12. A vector bundle E → B carries a Spin structure if and

only if w2(E) = w1(E) = 0.

Proof. It is known that a vector bundle is orientable if and only if its �rst
Stiefel-Whitney class w1(E) vanishes. The rest is a reformulation of the fact
that an orientable vector bundle has a Spin structure if and only if it has a
Pin± structure, see Example 1.2.8.

Corollary 1.2.13. Let E and F be two vector bundles over B.
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1. If E carries a Pin± structure and F a Spin structure, then E⊕F carries

a Pin± structure.

2. If E carries a Pin± structure and E ⊕ F is trivial, then F carries a

Pin∓ structure.

Proof. To prove the �rst assertion, use Cartan's formula and that F is Spin
to derive

w2(E ⊕ F ) = w2(E) + w1(E)w1(F ) + w2(F ) = w2(E)

and
w1(E ⊕ F ) = w1(E) + w1(F ) = w1(E).

Therefore, E and E ⊕ F have the same cohomology class as obstruction.
The proof of the second point is similar; just use

0 = w1(E ⊕ F ) = w1(E) + w1(F )

and Cartan's formula to derive

0 = w2(E ⊕ F ) = w2(E) + w1(F )2 + w2(F ).

Now, if E carries a Pin+ structure, then F carries a Pin− structure, and vice
versa.

The two-out-of-three lemma states that if two of the three vector bundles
E,F , and E⊕F over the same base space carry a Spin structure, so does the
third. The choice of the two Spin structures uniquely determines the third,
see [Mil63]. This lemma does not generalise to Pin± structures in general.
For example, RP 2×RP 2 does not carry a Pin− structure although RP 2 does.
However, if the vector bundles have the same �rst Stiefel-Whitney class, we
have a generalisation to Pin± structures.

Lemma 1.2.14 (two-out-of-three). Let E1, E2 → B be two vector bundles

with w1(E1) = w1(E2). Then the following three statements hold.

1. A Pin− structure on E1 and a Spin structure on E1 ⊕ E2 uniquely

determine a Pin+ structure on E2.

2. A Pin+ structure on E2 and a Spin structure on E1 ⊕ E2 uniquely

determine a Pin− structure on E1.

3. A Pin− structure on E1 and a Pin+ structure on E2 uniquely determines

a Spin structure on E1 ⊕ E2.

Proof. Since the three proofs only di�er by minimal modi�cations, we only
prove the �rst statement. Let E1 and E2 be trivialised over the open cover
(Uα)α∈A by Φ1

α and Φ2
α yielding transition functions {g

(1)
αβ} and {g

(2)
αβ}, respect-

ively. Then E1⊕E2 is also trivial over this open cover and has the transition
functions {g(1)

αβ⊕g
(2)
αβ}. Since w1(E⊕F ) = w1(E1)+w1(E2) = 2w1(E1) = 0 the

bundle E⊕F is orientable and we can arrange that {g(1)
αβ⊕g

(2)
αβ} ∈ SO(n1+n2)

by changing some trivialisation maps of E1 if necessary. Indeed, if the frame
{Φ1

α⊕Φ2
α(·, ej)}1≤j≤n1+n2 has not the chosen orientation, then we replace Φ1

α

by id× diag(−1, 1, . . . , 1) ◦ Φ1
α.
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Let {hαβ} be a �xed Spin structure with λ(hαβ) = {g(1)
αβ ⊕ g

(2)
αβ}. We

can decompose hαβ = uαβ · vαβ, where {uαβ} is a cocycle representing the
chosen Pin− structure of E1 lifting the cocycle {gαβ} and {vαβ} is a family
of continuous functions with values in Cl0,n2 lifting the transition functions
{g(2)

αβ}.
We have to show that {vαβ} satis�es the cocycle condition in Cl0,n2 . To

this end, we use the alternated product on Cln2,0 de�ned in Corollary 1.1.11
to derive the statement from the cocycle condition of uαβ and hαβ via the
following calculation:

1 = hαβhβγhγα = uαβvαβuβγvβγuγαvγα

= uαβuβγuγα︸ ︷︷ ︸
=1

vαβvβγvγα(−1)|uαγ |·|vαβ ·vβγ |(−1)|uβγ ||vαβ |

(1)
= vαβvβγvγα(−1)|vαγ |·|vαβ ·vβγ |(−1)|vβγ ||vαβ |

= vαβ ∗ vβγ ∗ vγα.

Note that equality (1) holds because det g
(1)
αβ · det g

(2)
αβ > 0 and therefore

uαβ ∈ Spin⇔ vαβ ∈ Spin. But this is equivalent to saying that uαβ and vαβ
have the same degree.

We have already seen that the existence of one Pin± structure implies
the existence of #H1(B,Z2) many di�erent non-equivalent Pin± structures
as long as B is locally contractible. However, the bijection between the set of
non-equivalent Pin± structure over a bundle and H1(B;Z2) is not canonical.
Corollary 1.2.13 gives us a bijection between the Pin± structures on E and
the Pin± structures on E ⊕ εr . But again, this bijection is not canonical.

The next lemma strengthens this observation by providing a canonical
bijection.

Lemma 1.2.15. For any vector bundle E → B of rank n and any r ≥ 0 there

is a canonical bijection between the equivalence classes of Pin± structures on

E and and the equivalence classes of Pin± structures on E⊕εr. This bijection
is natural with respect to isometric vector bundle homomorphisms.

Proof. Since O(E⊕εr) ∼= O(E)×O(n)O(n+r), every Pin± structure (P, ρ) over
O(E) induces a Pin± structure on O(E⊕εr) via (P×Pin±(n)Pin±(n+r), ρ×λ).

Clearly, this assignment preserves structure equivalences because a struc-
ture equivalence

P
θ //

��

P ′

��
O(E) id // O(E)

gives rise to a structure equivalence

P ×Pin±(n) Pin±(n+ r)
θ×id //

��

P ′ ×Pin±(n) Pin±(n+ r)

��
O(E)×O(n) O(n+ r) id // O(E)×O(n) O(n+ r).
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So, this map descends to a well-de�ned map between the sets of equivalence
classes of Pin± structures on the given bundles.

Let us prove injectivity �rst. If {gαβ} is a set of transition functions de-
scribing O(E), then ι(gαβ) describes O(E)×O(n) O(n+ r), where ι : O(n)→
O(n + r) is the canonical inclusion. The same is true for P and P ×Pin±(n)

Pin±(n+r). Now consider two equivalent Pin± structure P×Pin±(n) Pin±(n+

r) and P ′ ×Pin±(n) Pin±(n + r) over O(E) ×O(n) O(n + r). By Lemma 1.2.4
these two Pin± structures can be represented by cocycles {Hαβ} and {H ′αβ}
such that {ι(gαβ)} = {λ(Hαβ)} = {λ(H ′αβ)}. Consequently, the cocycles
{Hαβ} and {H ′αβ} take values in ι(Pin±(n)) ⊆ Pin±(n+ r). Therefore, there
exist Pin±(n)-valued cocycles {hαβ} and {h′αβ} such that {Hαβ} = {ι(Hαβ)}
and {H ′αβ} = {ι(H ′αβ)}, respectively. Since the chosen Pin± structures
are equivalent, there exists a family of ker(λ)-valued continuous functions
{xα} such that xαH ′αβx

−1
β = Hαβ. By the injectivity of ι, this implies that

{xαh′αβx−1
β } = hαβ. Since, by Lemma 1.2.4, {hαβ} and {h′αβ} are the trans-

ition functions of P and P ′, respectively, we conclude that P must be equi-
valent to P ′. Injectivity is therefore proven.

Next we address surjectivity. Let P be a Pin± structure for O(E ⊕ εr)
and let {ι(gαβ)} be a set of transition functions coming from O(E). Again,
by Lemma 1.2.4 we �nd trivialisations for P such that the corresponding
transition functions {Hαβ} satisfy {λ(Hαβ)} = {ι(gαβ)}. So, there exists a
cocycle {hαβ} with values in Pin±(n)

ι−→ Pin±(n + r) such that hαβ = Hαβ.
But this is equivalent to the existence of a Pin±(n) structure Q such that
Q ×Pin±(n) Pin±(n + r) and P are equivalent Pin±(n + r) structure over
O(E)×O(n) O(n+ r).

It remains to show naturality with respect to isometric bundle maps.
First note that an isometry f : E1 → E2 induces a morphism of principal
O(n)-bundle F = O(f) : O(E1) → O(E2). Because f is an isometry, so is
g := f ⊕ idεr if we equip E1 ⊕ εr and E1 ⊕ εr with the product metric.

Since

O(E1 ⊕ εr)
O(g)

��

O(E)×O(n) O(n+ r)
∼=oo

O(f)×id

��
O(E ⊕ εr) O(E2)×O(n) O(n+ r)

∼=oo

commutes, we can work with the right-hand-side instead. The claim fol-
lows now from the observation that (O(f)× id)∗ (P2 ×Pin± Pin±(n+ r)) and
O(f)∗(P2)×Pin±(n) Pin±(n+ r) are equivalent Pin± structures on O(E)×O(n)

O(n+ r).

Remark 1.2.16. Notice that the restriction to isometric bundle isomorphism
is only a restriction if we care about a special Riemannian metric; something
we do not do in this thesis. However, it is nice to have a criterion at hand
that is independent of the choice of a particular metrics or, equivalently,
independent of the choice of some O(n)-reduction.

Let ρj : Pj → Bj be two GLn principal bundles over CW-complexes, Oj ⊆
Pj be two O(n)-reductions, and Qj

ρj−→ Oj be two Pin± structures. We call a
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map of principal GLn-bundles Pin-structure-preserving, if

Q1 ×Pin± GPin± ∼= Φ∗
(
Q2 ×Pin± GPin±

)
as GPin± structures. By Theorem 1.2.10, these GPin± structures depend
only on the Pin± structure and not on the chosen O(n)-reduction. Thus, we
do not have to restrict ourselves to isometric vector bundle maps.

A nice application of the stabilisation property is that we can descend
Pin± structures from manifolds to submanifolds under certain conditions.
Indeed, if V ⊆ M is a manifold with trivial normal bundle, we can use the
isomorphism

ψ : TM |V = TV ⊕ ν(V ↪→M)
∼=−→ TV ⊕ εcodimV

to pull back the Pin± structure from TM |V to TV ⊕ εr via ψ−1 and then
apply the stabilisation Lemma 1.2.15 to induce a Pin± structure on TV .
Keep in mind that those Pin± structures might depend on the choice of ψ.

Example 1.2.17. An example of great importance is the case V = ∂M because
the boundary always has a trivial normal bundle. By the observation from
above we have to make a choice how to trivialise the normal bundle. Our
convention will be 'inward normal last', which means the following: After we
have chosen a Riemannian metric on M , we take the unique isometry

id⊕ ϕ : TM |∂M → T∂M ⊕ ε,

which sends the inward pointing normal vector of length 1 to the constant
the constant unit section 1: M → ε.

Note that a choice of a Riemannian metric gives a decomposition of the
tangent bundle at the boundary

TM |∂M = T∂M ⊕ T∂M⊥ = T∂M ⊕ ν

and therefore determines ϕ up to a sign. Conversely, a vector bundle map
id⊕ϕ and a Riemannian metric on T∂M induce a unique Riemannian metric
on TM |∂M , which can be extended not uniquely toM . So, we could also start
with a map ϕ, which sends the unit section to a inward pointing nowhere
vanishing vector vector�eld.

This vector bundle isometry induces an equivariant map on the associated
bundles of orthonormal frames

O(ϕ) : O(TM∂M)→ O(T∂M)×O(n) O(n+ 1) ∼= O(T∂M ⊕ ε).

The latter isomorphism is canonical and given by

[p,A] 7→

(
ei 7→

(
p

(
n∑
aj,iej

)
, an+1,i

))
.

Now we can pull the the Pin± structure back from the left-hand-side with
O(ϕ)−1 = O(ϕ−1) and apply Lemma 1.2.15.
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Example 1.2.18. Let M be an n-dimensional Pin± manifold and �x a Pin±

structure P
ρ−→ O(M). If we endow M × I with the product metric, the

chosen Pin± structure on M induces canonically a Pin structure on M × I
as follows. We have an isometry

ϕ : pr∗1TM ⊕ ε→ T (M × I)

(v, λ) 7→ v + λ · ∂t,

which gives rise to an equivariant map

pr∗1O(M)×O(n) O(n+ 1) = O(pr∗1TM ⊕ ε)
∼=−→ O(M × I).

The Pin± structure on M × I is de�ned as the pullback

O(ϕ−1)∗(P ×Pin±(n) Pin±(n+ 1)) //

��

P ×Pin±(n) Pin±(n+ 1)

ρ×id

��
O(M × I)

O(ϕ−1) // O(pr∗1TM ⊕ ε)

and will be denoted with Q→ O(M × I).
How does the Pin± descend to the boundary ∂(M × I) = M × ∂I? The

isometry ϕ0 := ϕ|M×{0} sends the constant section (0, 1) to ∂t, so it �ts the
'inward pointing last' convention. From

O(ϕ0)∗(Q) //

��

P ×Pin±(n) Pin±(n+ 1)

ρ×id

��
O(TM × {0} ⊕ ε) id // O(pr∗1TM ⊕ ε),

we conclude that the Pin± structure induced from M × I on M × {0} is
equivalent to the original one.

On M ×{1} we have a di�erent situation. Because ϕ(0, 1) is an outward
pointing vector �eld, we have to use the isometry

ϕ1 : pr1
∗(TM)|M×{1} ⊕ ε→ T (M × I)|M×{1}.

De�ne

ψ : O(TM)×O(n) O(n+ 1)→ O(TM)×O(n) O(n+ 1),

[p,A] 7→ [p, diag(1, . . . , 1,−1)A].

Then a model for the pullback

O(ϕ1)∗Q|M×{1} //

��

P ×Pin±(n) Pin±(n+ 1)

��
O(TM × {1} ⊕ ε)

∼=
��

O(ϕ−1
0 ◦ϕ1)

// O(TM ⊕ ε)
∼=
��

O(TM)×O(n) O(n+ 1)
ψ

// O(TM)×O(n) O(n+ 1)
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is given by

P ×Pin±(n) Pin±(n+ 1)

ρ×id

��

θ // P ×Pin±(n) Pin±(n+ 1)

ρ×id

��
O(TM)×O(n) O(n+ 1)

ψ // O(TM)×O(n) O(n+ 1),

where θ is given by [q, v] 7→ [q, en+1v].
We know that H1(M,Z2) acts simply and transitively on the Pin± struc-

tures of M . The element transferring

P ×Pin±(n) Pin±(n+ 1)
ρ×id−−→ O(TM)×O(n) O(n+ 1)

to
P ×Pin±(n) Pin±(n+ 1)

ψ◦ρ×id−−−−→ O(TM)×O(n) O(n+ 1)

is the �rst Stiefel-Whitney class.
Indeed, if {gαβ} is a cocycle representing O(TM) and {hαβ} is a cocycle

representing (P×Pin±(n) Pin±(n+1), ρ×id) with λ(hαβ) = gαβ, then it follows
from the commutative diagram above that the induced Pin± structure onM×
{1} can be represented by the cocycle {en+1hαβe

−1
n+1} = {(−1)|hαβ |hαβ}. But

{(−1)|hαβ |} = {det(gαβ)} is the cocycle representing the �rst Stiefel-Whitney
class.

Recapitulatory, one can say that the induced Pin± structures onM×{0}
and M × {1} di�er by the action of the �rst Stiefel-Whitney class w1(M).

De�nition 1.2.19. If P
ρ−→ O(TM) is a Pin± structure on M , we call

w1(M).P the inverse Pin± structure. If we have �xed a Pin± structure
on M , we denote with M̄ the same manifold but endowed with the inverse
Pin± structure.

Besides from the stabilisation property there is another bijection theorem
relating Pin− structures on a vector bundle with Spin structures on another
bundle.

Theorem 1.2.20. Let B be a CW-complex and E → B be a rank n vector

bundle. There is a natural one-to-one correspondence between the equivalence

classes of Pin− structures on E and the equivalence classes of Spin structures

on E ⊕ detE.
Analogously, there is a natural one-to-one correspondence between the

equivalence classes of Pin+ structures on E and the equivalence classes of

Spin structures on E ⊕ 3 · detE.

Proof. The proofs for Pin+ and Pin− are formally the same, so we restrict
ourselves to the Pin− case. Let {gαβ} be a cocycle representing E with values
in O(n). Then E ⊕ detE is represented by

{Gαβ} =

{[
gαβ 0
0 det gαβ

]}
.
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Let {hαβ} be a cocycle representing a Pin− structure on E that satisfy
λ(hαβ) = gαβ, and de�ne the Pin−(n+ 1)-valued functions

xαβ =

{
1, if det gαβ = 1

en+1, if det gαβ = −1.

Then {Hαβ} := {hαβ · xαβ} is a family of Pin−-valued maps that satisfy
λ(Hαβ) = Gαβ. Since Gαβ take values in SO(n + 1), the functions Hαβ are
actually take values in Spin(n+1). They are even a cocycle because Hαα = id
and

HαβHβγHγα = hαβ · xαβ · hβγ · xβγ · hγα · xγα
= (−1)|hγα|·|xβγ |+(|hβγ |+|hγα|)·|xαβ |hαβ · hβγ · hγα · xαβ · xβγ · xγα
= (−1)|xγα|·|xβγ |+(|xβγ |+|xγα|)·|xαβ |hαβ · hβγ · hγα · xαβ · xβγ · xγα
= (−1)|xγα|·|xβγ |+(|xβγ |+|xγα|)·|xαβ |xαβ · xβγ · xγα
= 1.

The last equality follows because only none or two of the three function can
be of odd degree since {det gαβ} is a cocycle. Indeed, if all functions are of
the same degree the last equation holds trivially. Otherwise, we may assume
without loss of generality that xαβ = xβγ = en+1. Then xγα = 1 and the last
equality reduces to

(−1)|xαβ |·|xβγ |xαβ · xβγ = (−1)(−1) = 1.

Thus, {Hαβ} de�nes a Spin structure on E ⊕ detE.
Conversely, any Spin structure of E ⊕ detE can be represented by a

cocycle {Hαβ} with λ(Hαβ) = Gαβ; therefore, Hαβ = hαβxαβ. We claim that
hαα = 1 and that {hαβ} satis�es the cocycle condition, and de�nes therefore
a Pin− structure on E. The �rst assertion is obvious, the second one follows
if we do the previous calculation backwards:

1 = HαβHβγHγα

= hαβ · xαβ · hβγ · xβγ · hγα · xγα
= hαβ · hβγ · hγα · (−1)|hγα|·|xβγ |+(|hβγ |+|hγα|)·|xαβ | · xαβ · xβγ · xγα
= hαβ · hβγ · hγα · (−1)|xγα|·|xβγ |+(|xβγ |+|xγα|)·|xαβ | · xαβ · xβγ · xγα
= hαβ · hβγ · hγα.

The described assignments are inverse to each other. Furthermore, they are
equivariant with respect to the H1(B;Z2)-action on the cocycles.

The previous theorem allows to assign to each Pin− manifold of dimension
n a Spin manifold of dimension n+ 1 in a functorial way. This construction
will be useful for relating Pin− bordism with Spin bordism.

Lemma 1.2.21. For a manifold M let M or = O(detTM)
p−→ M be its

orientation covering. Let Z2 act on S1 ⊆ C by complex conjugation and

denote the associated S1 �bre bundle M or ×Z2 S
1 over M with S(M). Then

the following assertions hold:



26 Chapter 1. The Pin groups and its bordism

1. S(M)
p−→M has two global section σ±1 : m 7→ [m̃,±1], where m̃ is some

element in the �bre of m in M̃ .

2. ν(σ±1) ∼= detTM .

3. TS(M) ∼= p∗(TM ⊕ detTM).
4. There is an embedding exp: detTM → S(M) \ imσ−1.

Proof. The �bre bundle S(M) can be constructed alternatively as follows. Let
{(Uα,Φα)} be a set of local trivialisation of TM such that the trivialisation
domains cover M and the trivialisation maps yield transition functions with
values in O(n). Then

S(M) =

(⊔
α

Uα × S1

)/
∼,

(α, x, ζ) ∼ (b, y, ω)⇔ x = y and ζ = gαβω

because both of these S1-�bre bundles have the same trivialisation domains
and the same transition functions.

The �rst assertion is obvious because ±1 lies in the stabiliser of the Z2

action. Using the alternative description of S(M), we observe for the normal
bundle of σ±1 : M ↪→ S(M) the identity

ν(σ±1)|Uα = ν
(
Uα × {±1} ↪→ Uα × S1

)
.

So, the isomorphism between ν(σ±1) and detTM is locally given by

Uα = detTM |Uα → ν
(
Uα × {1} ↪→ Uα × S1

)
= ν(σ±1)|Uα

(u, λ) 7→ [t 7→ exp(iλt)] .

In order to prove the third assertion, we consider the well-de�ned bundle
map

TS(M)→ TM ⊕ ν(σ±1),

[γ̃1, γ2] 7→
(
[p ◦ γ1] ,

[
γ2(0)−1 · γ2

])
.

Since it covers p : S(M)→M and is �bre-wise an isomorphism, we conclude

TS(M) ∼= p∗(TM ⊕ ν(σ±1)) ∼= p∗(TM ⊕ detTM).

For the last assertion, �x an odd, monotonically increasing di�eomorph-
ism φ : R→ (−π; π). Then

exp: detTM = M or ×Z2 R→M or × S1 = S(M),

[m̃, v] 7→ [m̃, exp(iφ(v))]

is a well de�ned embedding. Its image complements the image of the constant
(−1)-valued section σ−1.

De�nition 1.2.22. Let M be a Pin− manifold with a �xed Pin− structure.
By Theorem 1.2.20 this Pin− structure corresponds to a unique Spin structure
on TM ⊕ detTM . We call S(M) endowed with the pullback of this Spin
structure the Spini�cation of M .
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We close this section by considering of Pin± structures on connected sums.
The key observation is that two Pin± structures can be glued together, if they
are compatible. The next lemma gives a more precise description.

Lemma 1.2.23. For j ∈ {1, 2} let Pj
ρj−→ Oj be two Pin± structures over the

bundles Oj → Xj. Let Uj ⊆ Xj be two open subsets and ϕ : U1 → U2 be an

isometric di�eomorphism such that O(ϕ)∗P2|U1 is equivalent to P1|U1.

Then there is a unique Pin± structure P over the bundle O1 ∪O(ϕ) O2 →
X1 ∪ϕ X2 such that P |Xj = Pj.

Proof. Denote the composition of the upper horizontal line of

P1|U1
//

��

O(ϕ)∗P2|U2
//

��

P2|U2

��
O1|U1

id // O1|U1

O(ϕ) // O2|U2

with θ and de�ne

P := P1 ∪θ P2
ρ1∪θρ2−−−−→ O1 ∪O(ϕ) O2.

Since θ is equivariant the space P1 ∪θ P2 is a principal Pin±-bundle and the
map ρ1 ∪θ ρ2 is equivariant as well. Thus, P is indeed a Pin± structure.

Since the canonical inclusions Pj ↪→ P1 ∪θ P2 are equivariant, the second
statement follows.

Let us recall the de�nition of the connected sum of two manifolds.

De�nition 1.2.24. Consider the di�eomorphism

ψ : (Dn)◦ \ {0} → (Dn)◦ \ {0},

x 7→ 1− ||x||
||x||

· x.

For two smooth n-dimensional manifolds Mi and two charts ϕi : Ui → (Dn)◦

we de�ne the connected sum via

M0#M1 := M0 ∪ϕ−1
1 ◦ψ◦ϕ

M1.

We refer to the Ui as gluing domain.

It is easily veri�ed that the connected sums of two manifolds is again a
smooth manifold. However, its di�eomorphism class may very well depend
on the chosen chart; for example, CP 2#CP 2 is not homotopy equivalent to
CP 2#(−CP 2), because they have di�erent signatures. But this shall not
bother us because their Pin± bordism class will be the same. Therefore, we
will omit the chosen charts in the notation.

Observe that the di�eomorphism ψ maps the upper half-plane Rn−1×R≥0

to itself. Therefore, the construction above can be applied to boundary points
as well. We denote the connected sum along boundaries with M0#bM1.
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Theorem 1.2.25 (Pin structures on connected sums). Let M1 and M2 be

two Pin± manifolds of dimension n 6= 2 with �xed Pin± structure. Then

there is a unique Pin± structure on the connected sum M1#M2 such that the

inclusions Mj \ ϕ−1
j (1

3
Dn) ↪→M1#M2 are Pin± structure preserving.

If n = 2, then this statement also holds for Pin− manifolds.

The result carries over toM1#bM2 for all Pin± manifolds with non-empty

boundaries, even to Pin+ manifolds of dimension 2.

Proof. Choose Riemannian metrics on M1, M2, and M1#M2 such that the
inclusions Mj \ ϕ−1

j (1
3
Dn) ↪→M1#M2 become isometric.

If we set ϕ := ϕ−1
2 ◦ ϕ1 and use the open subsets Uj := ϕ−1

j ((Dn)◦) \
ϕ−1
j (1

3
Dn), almost all requirements of Lemma 1.2.23 are satis�ed. We only

need to verify that ϕ is Pin± structure preserving.
To this end, recall that the set of equivalence classes of Pin± structures

on U1 is parametrised by H1(U1;Z2) ∼= H1(Sn−1;Z2) ∼= 0 as long as n 6= 2.
Thus, in this case ϕ is automatically Pin± structure preserving and the �rst
part follows from Lemma 1.2.23.

Now, let n = 2. As in the �rst part it only remains to show that ϕ
preserves the Pin± structures. Since U1 ≈ (D2)

◦ \ 1
3
D2 ≈ 1

2

(
S1 ×

(
2
3
, 2
))
, a

Pin± structure on U1 is uniquely determined by its restriction to ϕ−1(1
2
S1).

But the Pin− structures on ϕ−1
j (1

2
S1) are restrictions from the Pin− structures

on ϕ−1
(

1
2
D2
)
, so the manifolds ϕ−1

j (S1) are Pin− boundaries. After we
have introduced the Pin− bordism groups, we will see that this property
determines the Pin− structure uniquely up to equivalence. Thus, ϕ is Pin−

structure preserving.
For M1#bM2 the goes analogously. Here, we have no case distinction

because the �rst cohomology of Uj ≈ 1
2

(
Dn ×

(
2
3
, 2
))

vanishes.

Note that the proof of the second part cannot be adapted to the Pin+ case,
because the circle with the 'bad' Spin structure bounds at the Möbius-strip
[KT90b]. In any case, the correctness of the second part for the Pin+ case is
only of minor importance for this thesis because we apply this theorem only
to Pin− manifolds.

1.3. The Pin bordism groups

This section presents the key objects of the entire thesis. We will use
the concepts from the previous section to de�ne the Pin− bordism groups
and prove elementary facts about them. Although the proofs presented here
generalise often to many other topological groups, we will only discuss Pin−

bordism. The reader is referred to Appendix B for a summary through
bordism theory.

De�nition 1.3.1 (singular Pin manifolds). Let X be a topological space.
A singular Pin− manifold is a triple (M,P

ρ−→ O(TM), f) consisting of a
smooth compact Pin− manifold M with a �xed Pin− structure (P, ρ) and
a continuous map f : M → X. We omit the Pin− structure and just write
(M, f) if it does not lead to confusions. In this case, the singular Pin−

manifold with inverse Pin− structure will be denoted with (M̄, f).
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De�nition 1.3.2. Two closed singular Pin− manifolds (Mi, fi) of dimension
n are called Pin− bordant, if there is a n+ 1 dimensional singular Pin− man-
ifold with boundary (W,F ) and a Pin− structure preserving di�eomorphism
ϕ : ∂W →M0 t M̄1 satisfying (f0 t f1) ◦ ϕ = F |∂W .

The singular Pin− manifold (W,F ) is called a Pin− bordism between
(M0, f0) and (M1, f1).

Lemma 1.3.3. Being Pin− bordant is an equivalence relation.

Proof. Re�exivity is proven in Example 1.2.18.
Symmetry follows from the following observation. If (W,F ) is a Pin− bor-

dism between (M0, f0) and (M1, f1), then (W̄ , F ) is a Pin− bordism between
(M1, f1) and (M0, f0).

Transitivity is a little bit harder. Let (V, F01) be a bordism between
(M0, f0) and (M1, f1), and (W,F12) a bordism between (M1, f1) and (M2, f2).
To keep notation simple, we assume ∂V = M0t M̄1 and ∂W = M1t M̄2. By
the collar neighbourhood theorem, there are open neighbourhoods U1 ⊆ V
and U2 ⊆ W of M1 such that Ui ≈M1 × [0, 1) via di�eomorphisms mapping
M1 identically to itself. An argument analogous to the one in Example 1.2.18
shows that M1× (−1, 0]∪M1× [0, 1) = M × (−1, 1) possesses a unique Pin−

structure which restricts on M1 × [0, 1) and M × (−1, 0] to the given ones.
So, (V ∪M1 W,F01 ∪ F12) is a singular Pin− manifold giving a Pin− bordism
between (M0, f0) and (M1, f1).

More generally, two not necessarily closed n-dimensional singular Pin−

manifolds (Mi, fi) are Pin− bordant if there is a Pin− bordism (U, f) between
(∂M0, f0|∂M0) and (∂M1, f1|∂M1), such that the closed singular Pin− mani-
fold (M0 ∪M0 Ū ∪∂M1 M1, f0 ∪ f1 ∪ f2), obtained by proper boundary modi-
�cations, is a Pin− boundary, i.e. it is Pin− bordant to the empty set. One
can show analogously that the general bordism relation is an equivalence
relation.

De�nition 1.3.4. Let (X,A) be a pair of topological spaces. The n-th Pin−

bordism group of (X,A) is de�ned by

ΩPin−

n (X,A) :=
{(M, f) | (M, f) sing. Pin− manifold, f(∂M) ⊆ A}

bordism
.

If A is empty, we will write ΩPin−

n (X) instead of ΩPin−

n (X, ∅). Note that the
condition A = ∅ forces the singular manifolds to be closed.

Lemma 1.3.5. ΩPin−

n (X,A) is an abelian group. Addition is induced by

disjoint union, the neutral element is given by an arbitrary singular Pin−

manifold that which is a Pin− boundary, and the inverse element is given by

the same singular manifold but with inverse Pin− structure.

Proof. The addition [M0, f0] + [M1, f1] := [M0 tM1, f0 t f1] is well-de�ned.
If (N0, g0) and (N1, g1) are other representatives, then the disjoint union of
the relating bordisms (Wi, Fi) gives a bordism between (M0 tM1, f0 t f1)
and (N1 tN2, g1 t g2).

Associativity and commutativity follow then from associativity and com-
mutativity of disjoint union.
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If (S, f) is a singular Pin− boundary of (B,F ), then a bordism between
(S tM, f t f1) and (M, f1) is given by (B tM × [0, 1], f t f1 ◦ pr1). By
choosing B = ∅ this bordism shows further that (M t M̄, f1 t f1) is a Pin−

boundary, and therefore −[M, f1] = [M, f1].

Note that our description of Pin− bordism is intrinsic because it does not
rely on the choice of some embedding. However, in order to use the famous
Pontrjagin-Thom construction it is useful to have a de�nition at hand that
uses the notion of normal bundles.

By Lemma 1.2.14 we know that a Pin− structure on a manifoldM induces
a unique Pin+ structure on ν(f : M ↪→ RN), because M × RN inherits a
canonical Pin− structure from TRN by restriction. Therefore, we get a stable
Pin+ structure on ν(f : M ↪→ RN), and our de�nition agrees with the one
usually given in the literature, like [DK01] or [Sto15].

The Pontrjagin-Thom construction gives an isomorphism

ΩPin−

n (X,A) ∼= lim
k→∞

πk+n(MPin+
k ∧X+/A+) = Hn(X,A;MPin+).

For the proof see [DK01], [Swi02] or [Sto15].
With a little faith one sees that the Pontrjagin-Thom construction is a

natural transformation between the functors ΩPin−

∗ (·, ·) and H∗(·, · ;MPin+).
Thus, Pin− bordism is a generalised homology theory [Swi02, Chapter 8].

The connecting homomorphism ∂ : ΩPin−

n (X,A) → ΩPin−

n−1 (A) is explicitly
given by restricting a singular manifold to its boundary, more precisely
∂[M, f ] = [∂M, f |∂M ].

Theorem 1.3.6. The addition on ΩPin−

∗ (pt) is also induced by the connected

sum of two manifolds.

Proof. Let M1 and M2 be two closed Pin− manifolds. We have to show that
M1#M2, endowed with the Pin− structure constructed in Theorem 1.2.25,
andM1tM2 are Pin− bordant. But a bordism betweenM1#M2 andM1tM2

is given by (M1 × I)#b(M2 × I). Indeed, as we have seen in Example 1.2.18
the Pin− structures on Mi induce unique Pin− structures on M × I turning
the inclusion Mi = Mi × {0} ↪→ M × I into Pin− structure preserving
embeddings. This gives, by Theorem 1.2.25, a unique Pin− structure on
(M1×I)#b(M2×I), where we glued along boundary points lying inMi×{0}.
The identi�cationMi = Mi×{0} gives a Pin− structure preserving inclusion
M1#M2 ↪→ (M1×I)#b(M2×I). This follows from Example 1.2.18 combined
with Theorem 1.2.25.

Since the connected sum construction leaves the Pin− structure on Mi ×
{1} unchanged, we conclude from Example 1.2.18

∂ ((M1 × I)#b(M2 × I)) = (M1#M2) t (M̄1 t M̄2)

Therefore, (M1 × I)#b(M2 × I) serves indeed as Pin− bordism between the
connected sum and the disjoint union of two Pin− manifolds.

Since manifolds are locally contractible, every continuous function can be
homotopied to a map that is constant on a neighbourhood of some point.
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This allows to generalise the connected sum construction to singular mani-
folds, and we can extend the result of Theorem 1.3.6 to arbitrary path con-
nected topological spaces.

Theorem 1.3.7. Let M1 and M2 be two compact, connected Pin− manifolds

of the same dimension and fi : Mi → X be continuous with images in the

same path connected component.

Then [M1, f1] + [M2, f2] = [M1#M2, f
′
1#f ′2], where f ′i ' fi are constant

on the gluing domain and take the same value.

Proof. Let f : D̄n → X be continuous, q < 1, and be g : qD̄n → X an
arbitrary continuous function that maps into the same path connection com-
ponent as f . Since the (closed) disk D̄n is contractible, f can be homotopied
relative Sn−1 to a continuous function f ′ : D̄n → X with f ′|qD̄n = g.

Thus, we can homotopy fi into continuous maps f ′i that are constant
on the glueing domain, and, because f1 and f2 take values in the same path
connected component, we can arrange that f ′1 equals f

′
2 on the gluing domain.

Since [Mi, fi] = [Mi, f
′
i ], it remains to construct a Pin− bordism between

(M1#M2, f
′
1#f ′2) and (M̄1t M̄2, f1t f2), but such a bordism is, for example,

given by ((M1 × I)#b(M2 × I), (f ′1 ◦ pr1)#b(f
′
2 ◦ pr2)) if we choose the same

Pin− structures as in the previous theorem.

Corollary 1.3.8. If X is path connected, then the addition on ΩPin−

n (X) is

induced by the connected sum. In particular, every element can be represented

by a connected Pin− manifold.

An immediate consequence is that class in ΩPin−

n (pt) can be represented by
connected Pin− manifolds. Combining this observation with the classi�cation
theorem for surfaces allows us to derive an important result for the structure
of ΩPin−

2 (pt).

Theorem 1.3.9. ΩPin−

2 (pt) is cyclic. The generator is [RP 2] with an arbit-

rary Pin− structure.

Proof. With the help of the Mayer-Vietoris sequence we derive inductively
the following isomorphisms

H1(#kRP 2;Z2)
⊕incl∗

∼=
// H1(RP 2 \ (D2 tD2);Z2)

⊕
H1(RP 2;Z2) ∼= Zk2.

⊕incl∗

∼=
oo

Since the �rst cohomology of the base space acts freely and transitively on the
set of Pin− structures, we conclude from this bijection that every Pin− struc-
ture on #kRP 2 can be obtained from the gluing construction as described in
the proof of Theorem 1.2.25.

Every element x ∈ ΩPin−

2 (pt) can be represented by a connected mani-
fold. The classi�cation theorem of surfaces states that every compact con-
nected two dimensional manifold is di�eomorphic to a surface of the form
(#kRP 2)#(#lT 2). If k = l = 0, we de�ne this expression to be S2. How-
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ever, since RP 2#T 2 is di�eomorphic RP 2#RP 2#RP 2, we conclude from the
equation

x =
[
(#kRP 2) # (#lT 2)

]
=
[
(#kRP 2) # (#lT 2)

]
+
[
#lRP 2

]
−
[
#lRP 2

]
=
[
#k+3lRP 2

]
−
[
#lRP 2

]
=
[
(#k+3lRP 2) # (#lRP 2)

]
that it can be represented by a connected sum of real projective planes with
some Pin− structure. But we have deduced that every Pin− structure on a
connected sum of projective planes is obtained from the gluing construction.
Thus, ΩPin−

2 (pt) is generated by [RP 2] and is therefore cyclic.

Remark 1.3.10. We will see later that ΩPin−

2 (pt) contains eight elements, so
it is isomorphic to Z8, see Corollary 1.5.2.

1.4. Relations between Pin and Spin bordism

The aim of this section is to determine the Pin− bordism groups in terms
of Spin bordism. The main result will be the existence of an isomorphism

ΩPin−

n (X) ∼= ΩSpin
n+1(RP∞ ×X,X),

which we will use later to calculate the needed Pin− bordism groups ΩPin−

∗ (pt).
The structure of this section can be summarised as follows. If γ∞ de-

notes the universal line bundle and Rn
Spin = ESpin(n)×Spin(n) Rn denotes the

universal Spin(n) vector bundle, then the exterior sum

γ∞ × Rn
Spin = pr∗1γ∞ ⊕ pr∗2Rn

Spin → BO(1)×BSpin(n)

has a Pin+ structure, so there is a classifying map gn for it. Stability give
rise to a map g : BO(1) × BSpin → BPin+, which will turn out to be a
homotopy equivalence. The isometric vector bundle maps covering gn give
rise to a map between the Thom spectra MO(1) ∧MSpin and MPin+.
Using an auxiliary bordism theory and the Pontrjagin Thom isomorphism
we will derive geometrically that this map is a weak homotopy equivalence
and by Whiteheads theorem for spectra it will be a homotopy equivalence.
This result strengthens the result in [KT90, Lemma 6]. In this section, we
will make use of the models BO(1) × BSpin(n) and B(O(1) × Spin(n)) at
di�erent places because it makes the proofs easier. Although the spaces
BO(1)×BSpin(n) and B(O(1)× Spin(n)) are homotopy equivalent, we will
nonetheless carefully distinguish these two models because sloppy identi�ca-
tions often lead to mistakes.

Let us now construct the homotopy equivalence between the classifying
spaces. Recall that Bιn : BSpin(n)→ BSpin(n+1) is unique up to homotopy
and classify the universal Spin(n) bundle as a Spin(n+ 1) bundle. By repla-
cing BSpin(n+1) with the mapping cylinder, we replace the map by a co�bra-
tion without changing the homotopy type of the target space. If we assume
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additionally that both spaces have the homotopy type of a CW-complex,
then the mapping cylinder has the homotopy type of a CW-complex as well.
Since we are free to choose our models, we may assume in the �rst place
that Bιn is an inclusion of a CW-subcomplex. Of course, the same holds for
BPin+(n).

Since every line bundle possesses a Pin+(1) structure, the universal line
bundle γ∞ has one. More generally, by Corollary 1.2.13, the bundle γ∞ ×
Rn

Spin = pr∗1γ∞ ⊕ pr∗2Rn
Spin has a Pin+(n + 1) structure. We �nd therefore a

classifying map gn : BO(1)×BSpin(n)→ BPin+(n+ 1). Stability gives the
diagram

BO(1)×BSpin(n)
gn //

id×Bιn
��

BPin+(n+ 1)

Bιn+1

��
BO(1)×BSpin(n+ 1)

gn+1 // BPin(n+ 2),

which commutes up to homotopy. The vertical arrows are co�brations, so
we can homotopy gn+1 to a map making the diagram commutative. Since we
are only interested in the homotopy type of gn+1, we may assume that the
diagram above already commutes in the �rst place.

If we set

BO(1)×BSpin := lim
n→∞

BO(1)×BSpin(n)

and

BPin+ := lim
n→∞

BPin+(n),

we derive the existence of a continuous map

g := lim
→
gn : BO(1)×BSpin→ BPin+.

The previous discussion applies to BPin+ as well. Thus, we can assume
that BPin+ is a CW-complex such that the canonical inclusion BPin+(n) ↪→
BPin+ is an inclusion of a subcomplex, which we will do for the rest of this
section. We assume the same for BO(1)×BSpin. We may even assume that
all these spaces are countable CW-complexes because all homotopy groups
have countably many elements [Hat02, p.359] and we are going to do that.

Classifying spaces identify the set of isomorphism classes of certain prin-
cipal bundles over a given space with the set of homotopy classes of maps
from this space into the corresponding classifying space. However, those are
unpointed maps and the homotopies may be free, while homotopy groups are
objects in the pointed world. The next lemma recalls the relation between
the set of pointed homotopy classes and unpointed homotopy classes. A proof
of the �rst part can be found in [DK01, Theorem 6.57], the second part is an
easy observation.

Lemma 1.4.1. Let (X, x0), (Y, y0), and (Z, z0) be well pointed topological

spaces, i.e. the base point is closed and its inclusion is a co�bration. Further-

more, Y and Z are assumed to be path connected.
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Then π1(Y ) acts on [X, x0;Y, y0] and the quotient set is precisely [X, Y ].
Any continuous map g : Y → Z induces an equivariant map via postcompos-

ition; more precisely

g∗([γ] . [f ]) = π1([γ]).g∗([f ]).

Theorem 1.4.2. For every k ≥ 0, the map

πk(g) : πk(BO(1)×BSpin)→ πk(BPin+)

is an isomorphism.

Proof. For k = 0, there is nothing to prove because both spaces are path
connected. Next, consider the case k = 1. If we choose models for BO(1)
and BSpin, which are countable CW-complexes, then on BO(1) × BSpin
the product topology agrees with the CW topology, so we obtain for the
fundamental group

π1(BO(1)×BSpin) ∼= π1(BO(1))⊕ π1(BSpin)

= π1(BO(1))⊕ lim
n→∞

π1(BSpin(n))

=
[
S1, BO(1)

]
⊕ 0

=
[
S1, BO(1)

] ∼= Z2.

Analogously, we verify

π1(BPin+) ∼= lim
n→∞

π1(BPin+(n)) = lim
n→∞

π0(Pin+(n)) = Z2.

Pick an element [α] ∈ π1(BO(1)×BSpin) such that π1(gn)([α]) = [gn ◦ α] =
0. Then we derive

(gn ◦ α)∗Rn+1
Pin+ = α∗(γ∞ × Rn

Spin) = (pr1 ◦ α)∗(γ∞ × εn) ∼= εn+1.

Since [S1, BO(1)] = Z2, the bundle pr1 ◦ α is either isomorphic to the trivial
bundle or the Möbius bundle. But the latter can be ruled out because it is not
stably trivial since its �rst Stiefel-Whitney class does not vanish. Therefore,
pr1 ◦ α is nullhomotopic and so is α.

Since π1(BO(1) × BSpin) and π1(BPin+) are abstractly isomorphic to
Z2, we conclude also surjectivity from injectivity of π1(gn).

For a generic k ≥ 2, we make use of Lemma 1.4.1. Since π1(g) is an
isomorphism, πk(g) will be an equivariant map, so it is enough to verify
bijectivity of

g∗ :
[
Sk, BO(1)×BSpin

]
→
[
Sk, BPin+

]
.

Take an element α that does not represent the constant class. Due to com-
pactness of Sk, the image of α hits only �nitely many cells in BO(1)×BSpin
and lies therefore in BO(1) × BSpin(N) for a su�ciently large N . Thus,
α∗(γ∞ × Rn

Spin(N)) is not a stably-trivial bundle and so must not

(gN ◦ α)∗(RN+1
Pin+) = α∗(γ∞ × RN

Spin).
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Consequently, [g ◦ α] = [gN ◦ α] is not null-homotopic and injectivity is
proven.

To prove surjectivity, we pick an arbitrary element [α] ∈
[
Sk, BPin+

]
.

Again, it can be represented by a map α : Sk → BPin+(N). Every vector
bundle E over a sphere Sk is orientable because its �rst Stiefel-Whitney class
takes values in the zero group. Thus, α∗RN

Pin+ has a Spin(N) structure. The
universal property of BSpin(N) guarantees the existence of a map β such
that the diagram

Sk α //

β ''

BPin+(N)

BSpin(N)

OO

commutes upto homotopy. With the help of β we derive an isomorphism

(ιn ◦ α)∗RN+1
Pin+ = ε⊕ α∗RN

Pin+
∼= ε⊕ β∗RN

Spin

= (const× β)∗(γ∞ × RN
Spin)

∼= (const× β)∗g∗N+1RN+1
Pin+ ,

which gives us a homotopy between between ιn ◦ α and gn ◦ (const× β). By
passing to the limes we get, using relaxed notation, α = g ◦ (const× β). We
have veri�ed surjectivity, and the theorem is therefore proven.

From Whiteheads theorem, which states that every weak homotopy equi-
valence is actually a homotopy equivalence, we immediately deduce the next
corollary.

Corollary 1.4.3. g : BO(1)×BSpin→ BPin+ is a homotopy equivalence.

Now, we are going to describe how the homotopy equivalence g give rise
to a homotopy equivalence between MO(1)∧MSpin and MPin+. In order
to do this, we have to introduce some notation.

De�nition 1.4.4. Let E → B be a vector bundle and g be some Riemannian
metric on it. We have the unit disk bundle

D(E) := {v ∈ E | g(v, v) ≤ 1}

and the unit sphere bundle

S(E) := {v ∈ E | g(v, v) = 1}.

The Thom space is de�ned by

Th(E) := D(E)/S(E).

The point [S(E)] is often denoted by ∞.

The homeomorphism class of the Thom space is actually independent
of the Riemannian metric. Indeed, renormalising gives a homeomorphism
between two Thom spaces that are constructed by using di�erent metrics.
Even better, in [tD08, p.533] there is a metric independent construction via
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mapping cylinders. Furthermore, it is easy to see that vector bundle maps
induces maps between Thom spaces, where the bundle maps don't need to
be isometries if we use the metric independent construction. Even better, if
the base space is a CW-complex, so is the Thom space, see [Swi02, p.228].
If B1 ⊆ B is a subcomplex, then Th(E|B1) ⊆ Th(E) is a subcomplex.

De�nition 1.4.5. MPin+ is the Thom spectrum associated to the stable
Pin+ structure, meaning MPin+

n = Th(Rn
Spin). In the same manner, we

de�ne (MO(1) ∧MSpin)n := MO(1) ∧MSpinn−1 := Th(γ∞ × Rn−1
Spin) and

M(O(1)× Spin)n := Th(Rn
Spin).

A proof that this de�nition leads indeed to a spectrum can be found in
[Swi02, 12.29].

Since O(n), and hence Pin+(n) and O(1)×Spin(n), are cellular groups, the
join construction, endowed with the weak topology, carries a CW-structure,
see A.3.3. Using the join-models for the classifying spaces, the group homo-
morphisms

O(1)× Spin(n) �
� jn //

��

Pin+(n+ 1)

λ
��

O(n+ 1) id // O(n+ 1)

induces a strictly commuting diagram

BO(1)×BSpin(n) �
� Bjn //

��

BPin+(n+ 1)

Bλ
��

BO(n+ 1) id // BO(n+ 1)

covered by strictly commuting isometric vector bundle maps

Rn+1
O(1)×Spin

Fn+1 //

��

Rn+1
Pin+

��
Rn+1

O
id // Rn+1

O .

Here, jn denotes the unique inclusion de�ned by (−1, g) 7→ e0 · g and Fn the
isometric vector bundle map induced from Ejn on the Borel construction, in
terms of diagrams

E (O(1)× Spin(n))×O(1)×Spin(n) Rn+1 Ejn×id // EPin+(n+ 1)×Pin+(n+1) Rn+1

Rn+1
O(1)×Spin

Fn+1 // Rn+1
Pin+
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All of these maps commute with the maps that arise from the inclusions
of subgroups, so the are even stably commutative. We also have isometric
classifying vector bundle maps

τ∞ × Rn
Spin

//

��

Rn+1
O(1)×Spin(n)

��
BO(1)×BSpin(n) ' // B(O(1)× Spin(n))

that are also stably commutative. These maps induce maps on the corres-
ponding Thom spaces, and by stability they give rise to maps between the
Thom spectra

MO(1) ∧MSpin→M(O(1)× Spin)

and
Th(F ) : M(O(1)× Spin)→MPin+.

The �rst map is a homotopy equivalence because we also have a classifying
vector bundle map from γ∞×Rn

Spin to Rn+1
O(1)×Spin. Since both bundles are uni-

versal, the composition of the classifying vector bundle maps are homotopic
to the identity through an homotopy of isometric vector bundle maps. To
prove that Th(F ) is a homotopy equivalence, it will be convenient to consider
an auxiliary bordism theory.

De�nition 1.4.6. We de�ne Ωτ
n to be the set of bordism classes of all closed

n-dimensional manifolds M that carry a Spin structure on TM ⊕ detTM .

By Theorem 1.2.20 the groups Ωτ
n and ΩPin−

n are canonically isomorphic.
In order to determine the Thom-spectrum of the bordism theory Ωτ

∗ we
describe the de�ning condition in terms of stable normal bundles.

Lemma 1.4.7. A manifold M has a Spin structure on M if and only if its

stable normal bundle ν = (νN)N decomposes into a line bundle l, which will

be automatically isomorphic to det ν, and a stable Spin bundle ξ.
The set of equivalence classes of Spin structures on TM⊕detTM and the

set of equivalence classes of Spin structures on ξ are in natural one-to-one

correspondence.

Proof. "⇒" After enlarging the ambient space, any two embeddings eventu-
ally become isotopic [Swi02, p.223]. Thus, the stable normal bundle depends
only on M and not on the embedding. Let S(M) = M or ×Z2 S

1 be the
S1-�bre bundle over M constructed in Lemma 1.2.21. From the de�nition of
M follows that S(M) has a Spin structure, and so its stable normal bundle
ξ does. Since we can embed M into S(M) via the constant 1-section, we
obtain for the stable normal bundle the decomposition

ν(M ↪→ RN) = ν(M ↪→ S(M))⊕ ν(S(M) ↪→ RN)|M
∼= detTM ⊕ ν(S(M) ↪→ RN)|M
= det ν(M ↪→ RN)⊕ ξN .
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"⇐" Let ν ∼= det ν⊕ξ such a decomposition forM and n the dimension of
M . Then, for a su�cient large K and rK := rk(νK), we have a decomposition

εrK+n ∼= νK ⊕ TM ∼= det νK ⊕ ξK ⊕ TM
= ξK ⊕ det νK ⊕ TM
= ξK ⊕ detTM ⊕ TM.

Since ξK has a Spin structure, so does detTM ⊕ TM .
The statement about the one-to-one correspondence follows from the de-

composition
εrK+n ∼= ξK ⊕ detTM ⊕ TM

and the Two-out-of-Three-Lemma 1.2.14.

Corollary 1.4.8. Ωτ
n
∼= πn(M(O(1)× Spin)) = πn(MO(1) ∧MSpin).

Proof. This isomorphism follows from the Pontrjagin-Thom isomorphism and
the previous lemma because the universal O(1) × Spin(N) vector bundle is
given by

RN+1
O(1)×Spin ' γ∞ × RN

Spin → BO(1)×BSpin(N) ' B(O(1)× Spin(N)).

Thus, we obtain for the Thom spaces the identity

Th(RN+1
O(1)×Spin) ' Th(γ∞ × RN

Spin) = Th(γ∞) ∧ Th(RN
Spin),

and for the Thom spectra M(O(1)× Spin) = MO(1) ∧MSpin.

The next Theorem presents a geometric interpretation of Th(F ) via the
Pontrjagin-Thom construction.

Theorem 1.4.9. The diagram

πn(M(O(1)× Spin))
Th(F )∗ // πn(MPin+)

Ωτ
n [M ]7→[M ]

//

∼=PT

OO

ΩPin−

n

∼=PT

OO

commutes. The vertical maps are the Pontrjagin-Thom isomorphisms.

Proof. The statement follows directly from the commutative diagram

Rn
O(1)×Spin

Fn //

��

Rn
Pin+

��
Rn

O
id // Rn

O.

Indeed, let M be a closed manifold with a �xed Spin structure on TM ⊕
detTM . We denote with ν the normal bundle of M induced by some
embedding and also a classifying vector bundle map ν → RN

O that has a
lift ν̃ : ν → RN

O(1)×Spin for the uniquely determined O(1) × Spin(N − 1) re-
duction of the normal bundle that corresponds to the chosen Spin struc-
ture on TM ⊕ detTM . Since FN is the vector bundle map that classify
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RN
O(1)×Spin as Pin+(N) vector bundle, the composition FN ◦ ν̃ is the lift for

the O(1) × Spin(N − 1) reduction considered as Pin+ reduction of ν. This
Pin+ structure on the normal bundle induces a unique Pin− structure on TM
by Theorem 1.2.20. By the uniqueness theorems 1.2.20 and 1.2.14, this Pin−

structure agrees with the Pin− induced from the given Spin structure on
TM⊕detTM because both structures together with the O(1)⊕Spin(N−1)
reduce to the trivial structure on the Whitney sum.

Since the lower horizontal homomorphism is a bijection by Theorem
1.2.20, the upper horizontal morphism must be a bijection, too. We conclude
that Th(F ) is a weak homotopy equivalence and by Whiteheads Theorem for
spectra it must be a homotopy equivalence.

Now, observe that the composition of the homotopy equivalence between
BO(1) × BSpin(n) and B(O(1) × Spin(n)) with Bjn is homotopic to gn
because both maps, the composition and gn, classify the universal vector
bundle γ∞ × Rn

Spin. We denote the isometric classifying vector bundle map
with Gn. These maps induce a map between the Thom-spectra, and we can
summarise the previous discussions by the following theorem, which leads to
the isomorphism described in [ABP69] and strengthens a result in [KT90,
Lemma 6].

Theorem 1.4.10. The map

Th(G) : MO(1) ∧MSpin→MPin+

is a homotopy equivalence.

In order to present the desired isomorphism, we have to determine the
Thom space MO(1).

Lemma 1.4.11. Let γn → RP n be the tautological line bundle. Then we

have

1. Th(γn) is homeomorphic to RP n+1.

2. MO(1) = Th(γ∞) is homeomorphic to RP∞

Proof. Observe that the tautological line bundle can be described by

γn = Sn ×Z2 R = (Sn × R)/ (x, t) ∼ (−x,−t).

Thus, the disc and the sphere bundle are given by

D(γn) = Sn ×Z2 [−1, 1]

S(γn) = Sn ×Z2 ×{−1, 1}

and we get an homeomorphism

D(γn)/S(γn)→ RP n+1

induced by

[x, t] 7→
[√

1− t2 : t · x
]
.

This shows the �rst part of the lemma. The second part is nothing but
passing n to in�nity.
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Note that we have under this isomorphism

MO(1) = RP∞ ) {[0 : x] |x ∈ S∞} = BZ2 = BO(1).

Corollary 1.4.12. We have the following description of Pin− bordism in

terms of Spin bordism.

ΩPin−

n (X) ∼= ΩSpin
n+1(RP∞ ×X,X)

Proof. Let x0 be a base point of RP∞ and X+ = X t {∞}. Then we have

(RP∞ ×X)+

/
X+ = (RP∞ ×X t {∞})/ (x0 ×X t {∞})

= RP∞ ×X/ {x0} ×X
= (RP∞ × ({∞} tX))/ (RP∞ × {∞} ∪ {x0} ×X)

= (RP∞ ×X+)/RP∞ ∨X+

= RP∞ ∧X+.

From this equation we derive the isomorphism

ΩPin−

n (X) = lim
l→∞

πn+l(MPin−l ∧X+)

∼= lim
l→∞

πn+l(MSpinl−1 ∧ RP∞ ∧X+)

= lim
l→∞

πn+l(MSpinl−1 ∧ (RP∞ ×X)+/X+)

= ΩSpin
n+1(RP∞ ×X,X).

The isomorphism given in Corollary 1.4.12 is rather abstract and has
actually ΩSpin

n+1(RP∞×X,X) as domain. So, it is not useful for practical cal-
culations. However, there is another homomorphism, which will turn out to
be very useful in the determination of [S1

Lie × S1
Lie] in ΩPin−

2 (pt), see Corollary
1.5.11.

De�nition 1.4.13. Let Φ: detTM → γ∞ be a vector bundle map covering
the classifying map of detTM . Then Th(Φ) ◦ exp−1 : S(M) \ im(σ−1) →
Th(γ∞) has a continuous extension to S(M) by sending the image of σ−1 to
in�nity. Denote this extension with tdetTM .

Note that di�erent classifying maps give homotopic extensions.

Theorem 1.4.14. The assignment

S : ΩPin−

n (X)→ ΩSpin
n+1(RP∞ ×X)

[M, f ] 7→ [S(M), tdetTM × f ◦ p]

is a group homomorphism.

Proof. Let (W,F ) be a singular Pin− bordism between (M0, f1) and (M1, f1).
Then (S(W ), F ◦ p) is a singular boundary of (S(M)(M0) t S(M1), f0 t f1).
It is even a Pin−-boundary because the Pin− structures ∂S(W ) and S(∂W )
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agree by the uniqueness Theorems 1.2.15 and 1.2.20. The construction of t
is �brewise, so we have the identity

tdetTW |∂S(W )
= tdetTM0 t tdetTM1 .

Furthermore, the homotopy class of tdetTM depends only on M . Thus, the
given assignment is well-de�ned and, because of

(S(M0 tM1), (f0 t f1) ◦ p) = (S(M0) t S(M1), f0 ◦ p t f1 ◦ p) ,

it is even a homomorphism.

Lemma 1.4.15. If M is a Spin manifold, then (S(M), tdetTM) = (M ×
S1, pr2), where we use the interpretation S1 = RP 1 ⊆ RP∞.

Proof. Since M is oriented, we �nd a section s : M → M or. This section
induces a di�eomorphism

M × S1 →M or ×Z2 S
1 = S(M)

(m, z) 7→ [s(m), z] .

Orientiability of TM also implies that we can choose the classifying map of
detTM to be constant with value [1 : 0 . . . ] ∈ RP∞. Thus, the associated
map on Thom spaces is induced by

D(detTM) = M or ×Z2 [−1, 1]→ RP∞ = Th(γ∞)

[m̃, t] 7→
[
t :
√

1− t2 : 0 : . . .
]
.

By pulling tdetTM back with this di�eomorphism, we obtain the continuous
map

(m, exp(iϕ)) 7→

[
ϕ

π
:

√
1−

(ϕ
π

)2

: 0 : . . .

]
,

which can be interpreted as pr2 under the identi�cation S1 = RP 1.

1.5. The Pin bordism coe�cients

In this section, we are going to calculate the coe�cient groups ΩPin−

n (pt)
for n ≤ 4. Using the isomorphism ΩPin−

n (pt) ∼= ΩSpin
n+1(RP∞, pt), this task is

equivalent to determine the relative Spin bordism group of RP∞ for n ≤ 5,
which can be done by applying the Atiyah-Hirzebruch spectral sequence to
ΩSpin−

∗ (RP∞), and then splitting o� the Spin coe�cient groups. The notation
we use for the spectral sequence calculations is introduced in Appendix C.

The next theorem summarises the results of the involved calculations.

Theorem 1.5.1. The �rst six relative Spin bordism groups of RP∞ are given

by:

ΩSpin
0 (RP∞, pt) ∼= 0, ΩSpin

3 (RP∞, pt) ∼= Z8,

ΩSpin
1 (RP∞, pt) ∼= Z2, ΩSpin

4 (RP∞, pt) ∼= 0,

ΩSpin
2 (RP∞, pt) ∼= Z2, ΩSpin

5 (RP∞, pt) ∼= 0.
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Corollary 1.5.2. For the Pin− bordism coe�cients we get the following iso-

morphisms.3

n = 0 1 2 3 4

ΩPin−

n (pt) Z2 Z2 Z8 0 0

The generator of ΩPin−

1 (pt) is [S1
Lie] and the generator of ΩPin−

2 (pt) is [RP 2].

Proof. It remains to prove the statement about the generators. Every com-
pact manifold of dimension one is di�eomorphic to S1, which has two di�erent
Pin− structures. But S1 equipped with the trivial Pin− structure is a bound-
ary of D2. So, the generator must be S1

Lie. Theorem 1.3.9 states that [RP 2]
is a generator of ΩPin−

2 (pt).

Before we start with the proof, let us recall from Appendix A that
ΩSpin
∗ (pt) is a graded ring acting on ΩSpin

∗ (RP∞). This action turns the
corresponding Atiyah-Hirzebruch spectral sequence into a spectral sequence
of ΩSpin

∗ (pt)-modules, which converges to ΩSpin
∗ (RP∞) as a ΩSpin

∗ (pt)-module.
Furthermore, ΩSpin

1 (pt) ∼= Z2 is generated by [S1
Lie] and ΩSpin

2 (pt) ∼= Z2 is
generated by [S1

Lie × S1
Lie]; we conclude that

ΩSpin
1 (pt)

·×[S1
Lie]

// ΩSpin
2 (pt)

is an isomorphism.
From the coe�cients listed in Example B.3.2, we are in the position to

determine the groups E2
p,q = Hp(RP∞,ΩSpin

q (pt)), which are partially listed
in Figure 1.1. The next step is to determine the di�erentials. A list of all

0 1 2 3 4 5

0

1

2

3

4

Z Z2 0 Z2 0 Z2

Z2 Z2 Z2 Z2 Z2 Z2

Z2 Z2 Z2 Z2 Z2 Z2

0 0 0 0 0 0

Z Z2 0 Z2 0 Z2

Figure 1.1. The second page E2
p,q = Hp

(
RP∞; ΩSpin

q (pt)
)
for p ≤ 5 and q ≤ 4 of

the Atiyah-Hirzebruch spectral sequence approximating ΩSpin
∗ (RP∞).

possibly non-trivial di�erentials of the second page we are interested in is
provided in the next theorem.

Theorem 1.5.3. Let (p, q) be a pair from the table below. Under the identi-

�cation E2
p,q
∼= Z2

∼= E2
p−2,q+1, the di�erentials corresponds to

(p, q) = (2, 1) (3, 0) (3, 1) (4, 1) (5, 0) (5, 1)
d2
p,q = 0 0 0 id id id

3 For a complete list see [ABP69]
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Before we prove this theorem, let us harvest its consequences. The di�er-
entials listed in Theorem 1.5.3 yield partial results for the third page listed
in Figure 1.2. Since any di�erential mapping into the �rst column must be

0 1 2 3 4 5

0

1

2

3

4

Z Z2 0 Z2 0 0

Z2 Z2 Z2 0 0

Z2 Z2 0 0

0 0 0

Z Z2

Figure 1.2. The third page E3
p,q for p ≤ 5 and q ≤ 4 of the Atiyah-Hirzebruch

spectral sequence approximating ΩSpin
∗ (RP∞).

zero, in particular d3
3,0, we observe that drp,q = 0 for every r ≥ 3 as long

as p + q ≤ 5. Therefore, we conclude E3
p,q
∼= E∞p,q for p + q ≤ 4. Using

a characteristic number argument, we will show that the generator of E3
1,4

must not survive and hence, E∞1,4 = 0. Thus, we do not need to determine
further di�erentials to write down the part of the in�nity-page we are in-
terested in. Since E∞0,q = F0,q = ΩSpin

q (pt) ⊆ ΩSpin
q (RP∞) always splits o�,

0 1 2 3 4 5

0

1

2

3

4

Z Z2 0 Z2 0 0

Z2 Z2 Z2 0 0

Z2 Z2 0 0

0 0 0

Z 0

Figure 1.3. The in�nity-page E∞p,q for p ≤ 5 and q ≤ 4 of the Atiyah-Hirzebruch

spectral sequence approximating ΩSpin
∗ (RP∞).

there is only one non-trivial extension problem to solve, namely, to determine
ΩSpin

3 (RP∞) = ΩSpin
3 (RP∞, pt) from the informations provided by the groups

on the fourth diagonal {E∞p,q | p + q = 3}. But we know from Theorem 1.3.9
that ΩSpin

3 (RP∞, pt) ∼= ΩPin−

2 (pt) is cyclic. Therefore, ΩPin−

2 (pt) is isomorphic
to Z8. The generator is represented by the real projective plane rather than
the Klein bottle. This results contradicts a statement in [Pet68] on page 34.
Thus, we veri�ed the equations in Theorem 1.5.1.

Now, we will ful�l our duty to �ll the gaps, namely, to determine the
di�erentials and to verify E∞1,4 = 0.

Lemma 1.5.4. d2
2,1 = 0.
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Proof. Since d2
2,1 maps to E2

0,2, a group in the column indexed by p = 0, it
must vanish by Corollary C.0.22.

Using ΩSpin
∗ (pt)-equivariance of the di�erentials, we deduce the following

lemma.

Lemma 1.5.5.

d2
p,1 = 0⇔ d2

p,0 = 0, for every odd p.

d2
p,1 = 0⇔ d2

p,2 = 0, for every p.

Proof. Let either q = 1, or q = 0 and p odd. Then the multiplication with
[S1

Lie] ∈ ΩSpin
1 (pt) gives an isomorphism

E2
p,q = Hp(RP∞; ΩSpin

q (pt))
·×[S1

Lie]

∼=
// Hp(RP∞; ΩSpin

q+1 (pt)) = E2
p,q+1.

The di�erential is ΩSpin
∗ (pt)-equivariant, so we obtain a commutative square

Z2 = E2
p,q

d2p,q //

∼= ·×[S1
Lie]

��

E2
p−2,q+1 = Z2

·×[S1
Lie]∼=

��
Z2 = Ep,q+1 dp,q+1

// E2
p−2,q

with vertical isomorphisms; the statement follows.

Lemma 1.5.6. d2
3,0 = 0 and d2

3,1 = 0.

Proof. Assume that d2
3,0 6= 0. Then E3

3,0 = ker d3
3,0 = 0 and, therefore,

E∞3,0 = 0. Since E∞3,0 = F3,0/F2,1, the previous conclusion implies

ΩSpin
3 (RP∞) = F2,1 = im[ΩSpin

3 (RP 2)
ι∗−→ ΩSpin

3 (RP∞)].

In other words, every singular Spin manifold of dimension three is bordant
to a singular Spin manifold with image in RP 2. In particular, (RP 3, ι) with
the canonical inclusion ι : RP 3 ↪→ RP∞ would be bordant to a singular Spin
manifold (M, f), where f takes values only values in RP 2.

Applying this observation to the generalised Hurewicz map, we deduce

ι∗[RP 3] = incl∗ ◦ f∗[M ] = 0

because it factors through H3(RP 2;Z2) = 0. But this is a contradiction
because ι∗ : H3(RP 3)→ H3(RP∞) is an isomorphism.

Now, the equality d2
3,1 = 0 follows from equivariance, see Lemma 1.5.5.

Corollary 1.5.7. E∞1,2 = E3
1,2.

Proof. The di�erentials dr1,2 vanish for every r ≥ 2 because their ranges lie
in the column indexed by q ≤ 0. Similarly, all dr1+r,2−r+1 vanishes for r > 3
vanishes because their domains are zero. Additionally, d3

4,0 = 0 because
E3

4,0 = E2
4,0 = 0, and the claim follows.



1.5. The Pin bordism coe�cients 45

Lemma 1.5.8. d2
4,1 6= 0.

Proof. Consider the homology long exact sequence

· · · ∆ // ΩSpin
4 (RP 2, pt) // ΩSpin

4 (RP 4, pt) // ΩSpin
4 (RP 4,RP 2) ∆ // · · · .

By applying the Atiyah-Hirzebruch spectral sequence to RP 2, we observe
ΩSpin

4 (RP 2, pt) ∼= Z2. Indeed, only the �rst three columns of the second
page are non-zero. Therefore, every di�erential d2

p,q having a non-zero target
space and a non-zero domain must ful�l p = 2. But d2

2,q is always the
zero map because its target space lies in the column indexed by p = 0, see
Corollary C.0.22. The higher di�erentials drp,q with r ≥ 3 always die because
either their domain or their target is zero. Consequently, E2

p,q = E∞p,q. Since
E∞3,1 = E3,1 = 0, we have ΩSpin

4 (RP 2, pt) ∼= E2
2,2
∼= Z2.

Next, we consider the group ΩSpin
4 (RP 4,RP 2) ∼= ΩSpin

4 (RP 4/RP 2, pt).
Since RP 4/RP 2 is homotopy equivalent to S3 ∪ϕ D4, where ϕ : S3 → S3

is a map of degree two, the corresponding Atiyah-Hirzebruch spectral se-
quence for this space has the second page partially presented in Figure 1.4.
Any di�erential with target in the column indexed by p = 0 vanishes, so

0 1 2 3 4 5

0

1

2

3

4

Z 0 0 Z2 0 0

Z2 0 0 Z2 Z2 0

Z2 0 0 Z2 Z2 0

0 0 0 0 0 0

Z 0 0 Z2 0 0

Figure 1.4. The second page E2
p,q of the Atiyah-Hirzebruch spectral sequence for

approximating ΩSpin
∗ (RP 4/RP 2).

we conclude that the second page is also the in�nity-page. We read o�
that ΩSpin

4 (RP 4,RP 2) ∼= ΩSpin
4 (RP 4/RP 2, pt) ∼= Z2. Thus, ΩSpin

4 (RP 4, pt)→
ΩSpin

4 (RP 4,RP 2) must either be zero or be surjective. From exactness we

deduce injectivity for the morphism ΩSpin
3 (RP 2, pt)

i∗−→ ΩSpin
3 (RP 4, pt), and,

therefore, injectivity for

ΩSpin
3 (RP 3) ⊇ F1,2

i1,2−−→ F1,2 ⊆ ΩSpin
3 (RP 4).

But this is a contradiction because

F1,2 = E∞1,2 = E3
1,2 → 0 = E3

1,2 = F1,2 ⊆ ΩSpin
3 (RP 4).

To see that the right E3
1,2 is zero, we use that incl : RP 4 ↪→ RP∞ induces a

natural isomorphism on the second pages of the corresponding AHSS in de-
gree p ≤ 3. So, by Lemma 1.5.6 we have d2

3,1 6= 0 for the AHSS approximating
ΩSpin
∗ (RP 4).
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Z2 Z2 Z2 Z2 Z2 0
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Z Z2 0 Z2 0 0

Figure 1.5. The second page E2
p,q of the Atiyah-Hirzebruch spectral sequence for

approximating ΩSpin
∗ (RP 4).

Consequently, ΩSpin
4 (RP 4, pt) → ΩSpin

4 (RP 4,RP 2) is the zero map. Ex-
actness then implies that Z2

∼= ΩSpin
4 (RP 2, pt) surjects onto ΩSpin

4 (RP 4, pt).
Now consider the second page of the AHSS for ΩSpin

∗ (RP 4). By the pre-
vious lemmas, we already know that dr3,0 = 0 for every r ≥ 0, so E∞3,1 =
E2

3,1
∼= Z2. Since E∞2,2 = E2

2,2/im d2
4,1, we conclude that im d2

4,1 6= {0}; other-
wise the group ΩSpin

4 (RP 4, pt) would consists of four elements and that is a
contradiction.

Since the inclusion RP 4 ↪→ RP∞ induces natural isomorphisms E2
p,q →

E2
p,q between the corresponding spectral sequences if p ≤ 4, the di�erential

d2
4,1 must also be non-zero in the AHSS for ΩSpin

∗ (RP∞).

Lemma 1.5.9. d2
5,0 6= 0 and d2

5,1 = 0.

Proof. Since d2
4,1 6= 0, the di�erential d3

5,0 : E3
5,0 → E3

2,2 = {0} vanishes neces-
sarily. This implies E∞5,0 = E5,0/im d2

5,0. So, if we assume that d2
5,0 = 0, then

the isomorphism induced by forgetting the Spin structure

SpinE2
5,0 = H5(RP∞,ΩSpin

0 )→ H5(RP∞,ΩSO
0 ) = SOE2

5,0

would give rise to an isomorphism

SpinE∞5,0 → SOE∞5,0,

and the map SpinF5,0 → SOF5,0 would not factor through SOF4,1 = SOF3,2.
Consequently, there would be an element of the form

[RP 5, incl] +
2∑

n=0

[Mn, fn],

which must be hit by a singular Spin manifold. Here, (Mn, f) denotes an
oriented singular manifold of dimension n. But this can be ruled out using
characteristic numbers. Indeed, under the identi�cation H∗(RP∞;Z2) ∼=
Z2[x] and H∗(RP 5;Z2) ∼= Z2[a]/〈a6〉 we have

w2(RP 2) ∪ incl∗x3 +
2∑

n=0

f ∗n(x3) ∪ w2(Mn) = a2 ∪ a3 = a5
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because f ∗n(x3) ∈ H3(Mn;Z2) = 0. By Poincaré duality, we conclude that
the characteristic number associated to this class is 1 instead of 0. So, this
class cannot be hit by Spin manifold and we derived a contradiction.

Consequently, d2
5,0 is indeed non-zero and we have �nally derived the �rst

part of the statement. The second part d2
5,1 follows from equivariance.

Lemma 1.5.10. E∞1,4 = 0.

Proof. Assume the contrary, then E∞1,4 = E2
1,4
∼= Z2. A comparison with

oriented bordism will lead to a contradiction. Forgetting the Spin structure
gives an isomorphism

SpinE1,4 → SOE2
1,4 = SOE∞1,4.

The groups on the right-hand-side are generated by [CP 2 × RP 1, pr2]. This
can be deduced from the ΩSO

∗ (pt)-action on the Atiyah-Hirzebruch spectral
sequence. But from this isomorphism we conclude that there is an element
in SOF1,4 that has the form

[CP 2 × RP 1, pr2] + [M5, const],

and must be hit by a singular Spin manifold. Again, this can be ruled out by
an characteristic number argument. Identify H∗(RP∞;Z2) with Z2[x] and
H∗(CP 2 × RP 1;Z2) with Z2[a, b]/〈a3, b2〉. We �nd

pr∗2(x) ∪ w2
2(CP 2 × RP 1) + const∗(x) ∪ w2

2(M5)

= pr∗2(x) ∪
(
w2(CP 2)× 1 + w1(CP 2)× w1(RP 1) + 1× w2(RP 1)

)2

= (1⊗ b) · (a2 ⊗ 1) = a2 ⊗ b 6= 0

and conclude from Poincaré duality that the induced generalised Stiefel Whit-
ney number is not zero. Therefore, this element cannot be represented by a
singular Spin manifold, and we have derived the desired contradiction.

As an application of the previous calculations, we will verify that the
torus with the 'bad' Spin structure is also a non trivial element in ΩPin−

2 (pt).

Corollary 1.5.11. [S1
Lie × S1

Lie] 6= 0 ∈ ΩPin−

2 (pt).

Proof. It su�ces to �nd a homomorphism that maps [S1
Lie × S1

Lie] not to
0 ∈ ΩSpin

3 (RP∞, pt) = ΩSpin
3 (RP∞). Luckily, the Spini�cation does the job.

Indeed, since S1
Lie × S1

Lie is a Spin manifold, the homomorphism S maps
[S1

Lie × S1
Lie] to [S1

Lie × S1
Lie × S1, pr3], which is not zero because it generates

the group E∞1,2 = E2
1,2 in the Atiyah-Hirzebruch spectral sequence associ-

ated to ΩSpin
∗ (RP∞). Indeed, [RP 1, incl] = [S1, incl], endowed with any Spin

structure, generates

ΩSpin
1 (RP∞, pt) = F1,0/F0,1 = E∞1,0 = E2

1,0 6= 0.

So, by the discussion above, multiplying with [S1
Lie × S1

Lie] gives an isomorph-
ism between E2

1,0 and E2
1,2 = E∞1,2. Thus, [S1 × S1

Lie × S1
Lie, pr1] is also a

generator of E∞1,2 6= 0 because changing the order gives a Spin preserving
di�eomorphism between the two representing singular Spin manifolds.





Chapter 2

The classifying space BO(2)

The aim of this chapter is to give a detailed discussion of the geometrical
and topological structure of the classifying spaces BZ2, BSO(2), and BO(2).
It is commonly known that BZ2 and BSO(2) = BS1 have RP∞ and CP∞
as geometric models. In [Mil74, p.65] it is shown that Gr(∞, n) provides a
model for BO(n); however, the suitable choice for our model will be CP∞×Z2

S∞. The advantages of this twisted product is that its cellular structure is
closer to the 'standard' cellular structures of RP∞ and CP∞, which is why
it simpli�es calculations on the level of chain complexes and (co-)homology.
Even better, the cellular structure we chose for this product consists of closed
cells that are compact manifolds. This observation turns out to be fruitful
for the calculation of the bordism groups presented in chapter 3.

The structure of this chapter can be summarised as follows. Firstly, we
will show that CP∞×Z2S

∞ serves indeed as a model for BO(2) and that it is a
CP∞-�bre bundle over RP∞. If we endow this model with the CW-structure
we have described above, then all closed closed cells are the closed manifolds
CPm ×Z2 S

n, which are known as Dold-manifolds and generators of the ring
N∗ = ΩO

∗ (pt) [Dol56]. Using this decomposition, we are able to calculate the
di�erentials of the cellular (co-)complexes and, consequently, to determine
the (co-)homology groups in any coe�cients. Explicit results will be stated
for the rings Λ ∈ {Z,Z2,Z8}.

In the last part of this chapter we take a closer look at the cells P (m,n)
itself. We will show that P (m,n) generates a homology class dual to wn1w

m
2

and calculate its total Stiefel-Whitney class. This will tell us which of those
manifolds are Pin, orientable, e.t.c.

After developing the content of the �rst four sections of this chapter, the
author has noticed the existence of the very worth reading paper of Dold
[Dol56], which contains many of the independently developed results here.

2.1. A twisted product as model

Before we give the precise de�nition of CP∞ ×Z2 S
∞, let us recall that

O(n) = SO(n)×Z2 as sets, but the group structure is given by a semi-direct
product rather than a direct product. Indeed, there is a short exact sequence

1 // SO(n) ι // O(n) det // Z2
//

r
hh

1,
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where r(±1) = diag(±1, 1, . . . , 1) ∈ O(n). Therefore, O(n) ∼= SO(n) oθ Z2,
where θ : Z2 → Aut(SO(n)) is de�ned by θ(h)(n) = ι−1(r(h)ι(n)r(h)−1). The
group structure on SO(n) oθ Z2 is then given by

(n1, h1).(n2, h2) = (n1θ(h1)(n2), h1h2)

and the isomorphism by (n, h) 7→ n · r(h), as one can easily check.
If n = 2, then O(2) ∼= S1 o Z2 y C, where S1 acts by complex multi-

plication and (1,−1) as complex conjugation. It is not hard to check that
the isomorphism carries this representation to the standard representation of
O(2) on R2.

De�nition 2.1.1. Let Z2 act on CP∞×S∞ via (−1).([z], x) = ([z̄],−x) and
de�ne

CP∞ ×Z2 S
∞ = (CP∞ × S∞)/Z2.

The concept of a semi direct product allows us to identify CP∞ ×Z2 S
∞

as a model for BO(2) in a very transparent manner. If we interpret S∞ =
S2∞−1 ⊆ C∞, then S1 acts on S∞ by complex multiplication, and we obtain
a S1 �bre bundle over S∞/S1 = CP∞. By replacing S1 with Z2, we identify
S∞ as a Z2-�bre bundle over RP∞. Since S∞ is contractible, these bundles
must be universal (c.f. [tD08, Theorem 14.4.12]), and CP∞ and RP∞ are
classifying spaces for the groups S1 and Z2, respectively. An analogous result
for BO(2) is given in the next lemma.

Lemma 2.1.2. The composition of the canonical projections

S∞ × S∞ π×id // CP∞ × S∞ κ // CP∞ ×Z2 S
∞

induces the structure of a principal O(2)-bundle on S∞×S∞. Consequently,
CP∞ ×Z2 S

∞ serves as a model for BO(2).

Proof. A right action O(2) = S1 o Z2 is given by

(S∞ × S∞)× (S1 o Z2)→ S∞ × S∞,
((z, x), (w, y)) 7→ (θ(y)(z · w), x · y)

as the following calculation shows:

(z, x). ((w1, y1)(w2, y2)) = (z, x).(w1θ(y1)(w2), y1y2)

= (θ(y1y2) (z · w1θ(y1)(w2)) , x · y1y2)

= θ(y2)θ(y1) ((z · w1θ(y1)(w2)) , x · y1y2)

= (θ(y2) (θ(y1)(z · w1) · w2) , x · y1y2)

= ((z, x).(y1, w1)) .(w2, y2).

To see that S∞ × S∞ is locally trivial, consider the open subsets

Um = {[z] | zm 6= 0} ⊆ CP∞ and V ±n = {x | ± xn > 0} ⊆ S∞.
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The bundle S∞ × S∞ will be trivial over the open subsets [Um × V ±n ] ⊆
CP∞ ×Z2 S

∞. Indeed, there are equivariant homeomorphisms given by

Φ−1
m,n,± : [Um × V ±n ]×O(2)→ S∞ × S∞|[Um×V ±n ] = Um × (V +

n ∪ V −n ),

([u, v]; (z, x)) 7→ θ(x)(ũ · z, ṽ · x),

where (ũ, ṽ) is the unique representative of [u, v] satisfying ũm > 0 and
±vn > 0. The previous calculation also shows the equivariance of these
maps.

The diagram

[Um × V ±n ]×O(2) //

pr1 ))

Um × (V +
n ∪ V −n )

κ◦(π×id)uu
[Um × V ±n ]

commutes by construction, and one easily sees that Φ−1|m,n,± is a homeo-
morphism; thus, S∞×S∞ is indeed a principal O(2)-bundle over CP∞×Z2S

∞.
Since the total space is contractible, S∞×S∞ → CP∞×Z2 S

∞ serves indeed
as a model for EO(2)→ BO(2).

Theorem 2.1.3. For any 0 ≤ m,n ≤ ∞, the projection map

π : CPm ×Z2 S
n → RP n,

[[z], x] 7→ [x]

turns P (m,n) into a CPm-�bre bundle.

Proof. Similarly to the notation used in the last proof, we de�ne Vk := {[x] ∈
RP n |xk 6= 0}. Then the map

Φ−1
k : Vk × CP k → [CPm × V +

k ],

([x], [z]) 7→ [z, x̂]

is a homeomorphism. Here, x̂ is the representative of [x] satisfying xk > 0.
Of course the relation p ◦ Φ−1

k = pr1 is also satis�ed. Consequently, π is a
�bre bundle map with �bre CPm.

There is a canonical section of π

σ0 : RP n → P (m,n),

[x] 7→ [[1 : 0 : . . . ], x],

which is a cellular map. We will use this section in chapter 3 to produce a
split in the spectral sequences for BO(2). However, it is convenient to know
that any two sections of π are homotopic and, therefore, that the split will
not depend on a speci�c choice.

Theorem 2.1.4. Any two sections of π : BO(2)→ RP∞ are homotopic.
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Proof. Let σ be an arbitrary section of π. We will show that σ∗(S∞ × S∞)
is isomorphic to

σ∗0(S∞ × S∞) = {([x], z, x) |σ0([x]) = [[z], x]}
∼=
pr2
{(z1, x) |x ∈ [x]} = S1 × S∞.

From the universal property of BO(2) it will follow that σ and σ0 are homo-
topic.

First observe that we can �nd a continuous map s = sσ : S∞ → CP∞
satisfying s(−x) = s(x) and σ([x]) = [s(x), x]. Indeed, covering theory
provides a lift

S∞
2:1 //

++

RP∞ σ // BO(2)

CP∞ × S∞,

2:1

OO

and projecting this lift onto the �rst component gives the desired function
S = sσ. Since S∞ is contractible, our function s is homotopic to the constant
map S∞ → {[1 : 0 : . . . ]} ⊆ CP∞ via a homotopy denoted by h.

Since S1 → S∞ → CP∞ is a Serre �bration, we can lift this homotopy
to S∞ such that H(·, 1) maps everything to e1 = (1, 0, . . . ). Set s̃ = H(·, 0).
This is a lift of s by construction. Since [[s̃(x)], x] = [[s̃(−x)],−x], we con-
clude

s̃(−x) = ρ(x) · s̃(x)

with ρ(x) ∈ S1. Note that the map x 7→ ρ(x) = 〈s̃(x), s̃(−x)〉 is a continuous
map S∞ → S1. Here, 〈·, ·〉 refers to the standard bilinear form on C∞ and
not the hermitian form. From

s̃(x) = s̃(−(−x)) = ρ(−x) · s̃(−x)

= ρ(−x) · ρ(x) · s̃(x)

= ρ(−x) · ρ(x) · s̃(x),

we derive 1 = ρ(−x)ρ(x) or, equivalently,

ρ(x) = ρ(−x).

Since ρ is homotopic to the constant map, covering theory yields the existence
of continuous square root ρ1/2. Then

Sσ(x) :=
(
ρ1/2

)−1 · s̃(x)

satis�es Sσ(−x) = Sσ(x) and, we have therefore

σ([x]) = [[Sσ(x)], x].

With the help of Sσ we have a nice description of σ∗(S∞ × S∞), namely

σ∗(S∞ × S∞) = {([x], z, v) | σ([x]) = [[z], v]}
= {([x], ζ · Sσ(x), x) | ζ ∈ S1}
∼=
pr1
{(ζ · Sσ(x), x) | ζ ∈ S1}.
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Now, an equivariant map between σ∗(S∞ × S∞) and S1 × S∞ is given by

σ∗0(S∞ × S∞) = S1 × S∞ → σ∗(S∞ × S∞)

(ζ, x) 7→ (ζ · Sσ(x), x).

This map covers the identity on RP∞ and is therefore a bundle equivalence.
By the universal property of BO(2), the maps σ and σ0 must be homotopic.

2.2. The CW-structure and the (co-)homology of the
model

Having introduced our geometric model for BO(2), we take a closer look
at its CW-structure. We will derive a cell decomposition for BO(2) close to
the standard cellular structures of RP∞ and CP∞. Then we will use this
decomposition to calculate the singular homology and cohomology groups of
BO(2) with coe�cients in Λ ∈ {Z, Z2, Z8}.

Let us recall that CP∞ has the skeleton (CP∞)(2k−1) = (CP∞)(2k) = CP k,
and that the attaching map to glue a 2(k+ 1)-disc to the (2k+ 1)-skeleton is
given by the canonical projection S2k+1 → CP k = S2k+1/S1. Since we have
only one closed cell of dimension 2k, we denote it with CP k, too.

For RP∞, we have an analogous result, namely (RP∞)(k) = RP k, and
the attaching map is given by the canonical projection Sk → RP k = Sk/Z2.

To construct our preferred cell structure for BO(2) = CP∞×Z2S
∞, recall

that S∞ has the cell decomposition into upper and lower hemispheres. The
skeleton is given by (S∞)(k) = Sk, and we attach two (k + 1)-cells to the
skeleton via the following pushout

Sk t Sk idtid //

��

Sk

��
Dk+1 tDk+1

Φ0tΦ1

// Sk+1.

The characteristic maps are de�ned by

Φj(x) =
(
x, (−1)j

√
1− ||x||2

)
.

We denote the closed k-cells with ekj = Φj(D
k).

The cell decomposition of CP∞×S∞ is given by the product cells CP k×
en−2k
j . Since CP∞ and S∞ have only countably many cells, the limit topology
on CP∞ × S∞ agrees with the product topology [SZ94, Chapter 4].

We obtain a CW-structure on CP∞ ×Z2 S
∞ by applying the canonical

projection κ : CP∞×S∞ → CP∞×Z2 S
∞. More precisely, CP∞×Z2 S

∞ can
be decomposed into the closed (2m+n) cells κ(CPm×Sn) = P (m,n), which
are known to be the Dold-manifolds. Indeed, using this cell decomposition
we get for the skeleton BO(2)(k) =

⋃
P (m, k− 2m). The characteristic map

for P (m,n) is given by

D2m+n ≈ // D2m ×Dn // CPm × en0
κ // P (m,n).
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Even better, P (m,n) is not only a closed cell in BO(2) but also a subcomplex
consisting of all closed cells P (m′, n′) with m′ ≤ m and n′ ≤ n. Furthermore,
one can easily observe that the maps given in Theorem 2.1.4 are not just
cellular maps but maps sending closed cells to closed cells. The covering
map κ does the same, by construction.

The cohomology of BO(2):

Let us �rst recall the cellular chain complexes of CP∞ and S∞, and use
these to calculate the cellular chain complex of CP∞ ×Z2 S

∞.
Since CP∞ has only cells of even dimension, we have

Ccellq (CP∞; Λ) ∼=

{
Λ, if q is even,

0, if q is odd,

and the cellular di�erential is therefore always zero for algebraic reasons.
Using the hemisphere decomposition of S∞, we get for the cellular groups

Ccellq (S∞; Λ) ∼= Λ2, where the generators are given by the upper and lower
hemisphere. With an appropriate orientation, the cellular di�erential is given
by

∂q(e
q
j) = (−1)j(eq−1

0 + eq−1
1 ).

Since CP∞ × S∞ consists of product cells we derive derive

∂q(CP k × eq−2k
j ) = ∂2kCP k × eq−2k

j + (−1)2k · CP k × ∂q−2ke
q−2k
j

= 0 + (−1)j · CP k × (eq−2k−1
0 + eq−2k−1

1 )

= (−1)j · CP k × (eq−2k−1
0 + eq−2k−1

1 ).

We need an auxiliary lemma to calculate the cellular di�erential of the
cellular complex of CP∞ ×Z2 S

∞.

Lemma 2.2.1. The complex conjugation ·̄ : CP k → CP k reverses the ori-

entation if and only if k is odd.

Proof. It is well known that a linear isometry A ∈ O(n + 1) restricts to a
continuous selfmap on Sn with mapping degree det(A).

Using this fact, we derive the statement from the following commutative
diagram

H2k(CP k,CP k−1)
·̄∗ // H2k(CP k,CP k−1)

H2k(D
2k, S2k−1)

Φ∗ ∼=

OO

·̄∗ //

∂ ∼=
��

H2k(D
2k, S2k−1)

∂∼=
��

∼= Φ∗

OO

H2k−1(S2k−1)
·̄∗

= (−1)k·id
// H2k−1(S2k−1).

Theorem 2.2.2. The cellular complex of CP∞ ×Z2 S
∞ has the following

description: For the groups we have

Ccellq (CP∞ ×Z2 S
∞) ∼= Λb

q
2

+1c
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with basis {P (k, q − 2k) | 0 ≤ k ≤ b q
2
c}. The di�erential is given by

∂cellq (P (k, q − 2k)) = (1 + (−1)q−k) · P (k, q − 2k − 1)

Proof. The statement about the cellular groups follows immediately from the
cell decomposition we gave above. It remains to verify the identity for the
cellular di�erential.

Consider the commutative diagram

Ccellq (CP∞ × S∞)

κq
����

∂q // Ccellq−1(CP∞ × S∞)

κq−1

����
Ccellq (CP∞ ×Z2 S

∞)
∂q

// Ccellq−1(CP∞ ×Z2 S
∞),

and recall that we have de�ned P (k, q − 2k) = κq(CP k × eq−2k
0 ). Note that

κq(CP k × eq−2k
1 ) and P (k, q − 2k) may di�er by a sign as the following com-

putation shows:

κq(CP k × eq−2k
0 ) = κq ◦ (̄· × −id)q(CP k × eq−2k

1 )

= κq ◦ (̄· × id)q ◦ (id×−id)q(CP k × eq−2k
1 )

= κq ◦ (̄· × id)q

(
(−1)q−2k−1CP k × eq−2k

0

)
= (−1)q−2k−1κq(CP

k × eq−2k
0 )

= (−1)q−2k−1(−1)kκq(CP k × eq−2k
0 )

= (−1)q−kP (k, q − 2k).

Putting these informations together, we get

∂q(P (k, q − 2k)) = ∂q ◦ κq(CP k × eq−2k
0 ) = κq−1

(
∂q(CP k × eq−2k

0 )
)

= κq−1(CP k × eq−1−2k
0 + CP k × eq−1−2k

1 )

= P (k, q − 2k − 1) + (−1)(q−1)−k−1P (k, q − 1− 2k)

= (1 + (−1)q−k)P (k, q − 1− 2k).

Corollary 2.2.3. The kernel of the cellular di�erential ∂cellq is generated by

the sets {P (k, q−2k) | 2 6 |(q−k)} and {r ·P (k, q−2k) | 2 ·r = 0, 2|(q−k)} as
long as q is not divisible by 4. Otherwise, P (q/2, 0) lies additionally in the

kernel. The image is generated by {2 ·P (k, q−2k) | 0 ≤ k ≤ bq/2c, 2 6 |q−k}.

Note that P (q/2, 0) is never a cellular boundary. Therefore, if q is divisible
by 4, its induced homology class does not belong to the torsion subgroup.

Example 2.2.4. Let us apply the Corollary 2.2.3 to the cases Λ ∈ {Z, Z2,
Z8}.

Λ = Z2: Since 2 = 0 we have ∂q = 0 for every q. Thus, we get for the

homology groups Hq(BO(2);Z2) ∼= Ccellq (BO(2);Z2) ∼= Zb
q
2

+1c
2
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Λ = Z: Using Corollary 2.2.3, we deduce Hq(BO(2)) ∼= Zbq/4+1c
2 if q is not

divisible by 4, and Hq(BO(2)) ∼= Zbq/4c2 ⊕ Z if q is. In this case, the free
part is generated by P (q/2, 0).

Λ = Z8: Again, if q is not divisible by 4, then Hq(BO(2);Z8) ∼= Zbq/2+1c
2

and Hq(BO(2);Z8) ∼= Zbq/4c2 ⊕ Z8 otherwise. The free part is generated
by P (q/2, 0). A set of generators for the torsion part is given by the set
{P (k, q − 2k) | q − k odd} ∪ {4 · P (k, q − 2k) | q − k even}.
The �bre bundle map π given in Theorem 2.1.3 and its section σ0 are

cellular maps. The induced maps on the cellular complexes are given by

Ccell(π) : P (k, l) 7→ RP l and Ccell(σ0) : RP l 7→ P (0, l).

Together with the computation of the cellular boundary, this observation
proves the following lemma.

Lemma 2.2.5. Let R be an abelian group. The kernel of Ccellq (π) is generated
by all cells P (k, q−2k) with k > 0 and kerHq(π) ⊆ H∗(BO(2);R) is generated
by all elements of the form r ·P (k, q−2k) with k > 0 and r ·∂P (k, q−2k) = 0.

Having determined the cellular boundary map of the cellular chain com-
plex, the determination of the cellular coboundary map of the cellular cochain
complex becomes a formality and is easily done. Therefore, we will omit the
calculations and just give the results.

Let ϕk,q−2k ∈ Cqcell(BO(2); Λ) = HomZ(Ccellq (BO(2);Z); Λ)) be dual to
P (k, q − 2k) in the sense that ϕk,q−2k(P (k, q − 2k)) = δkl. These dual cells
form a basis of the cellular cochain groups, and the cellular coboundary δqcell
is uniquely determined by the images of the cocells. The next results are
immediate consequences of the calculations done for the homological case.

Theorem 2.2.6. For the cellular coboundary, we have

δq(ϕk,q−2k) = (1 + (−1)q+1−k) · ϕk,q+1−2k.

Corollary 2.2.7.

ker δq = spanR ({ϕk,q−2k | 2|(q − k)} ∪ {r · ϕk,q−2k | 2 · r = 0, 2 6 |(q − k)}) ,
im δq = spanR{2 · ϕ | 2|(q − k).}

Example 2.2.8. We apply Corollary 2.2.7 to determine the cohomology groups
for the cases Λ ∈ {Z, Z2, Z8}.

Λ = Z2: Since 0 = 2, we have δq = 0, and we derive for the cohomology

groups Hq(BO(2);Z2) = Cqcell(BO(2); Λ) ∼= Zb
q
2

+1c
2 .

Λ = Z: We have Hq(BO(2);Z) ∼= Zb
q
4

+1c
2 if q is not divisible by 4. Oth-

erwise, we have Hq(BO(2);Z) ∼= Zb
q
4
c

2 ⊕ Z. The free part is given by
ϕq/2,0.

Λ = Z8: If q is not divisible by 4, we have Hq(BO(2);Z8) ∼= Zb
q
2

+1c
2 . If q

is divisible by 4, then Hq(BO(2);Z) ∼= Zb
q
2
c

2 ⊕ Z. The free part is given
by ϕq/2,0.
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Before we close this section, we note that Theorem 2.2.2 also holds for
the CW-complexes P (m,n) without any restrictions because they are sub-
complexes. On the other hand, the cellular coboundary has to be properly
modi�ed because we might 'run out of cocells'. If we use mod 2 coe�cients
then the cellular boundary and coboundary is always zero. Therefore, we
obtain an analogue of Corollary 2.2.4 and 2.2.7 for the Dold-manifolds.

Theorem 2.2.9. For 0 ≤ q ≤ 2m+ n, we have

Hq(P (m,n);Z2) ∼= Zb
q
2
c+1

2
∼= Hq(P (m,n);Z2),

and the inclusion P (m,n) ↪→ P (m′, n′) induces a monomorphism on homo-

logy and an epimorphism on cohomology.
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2.3. The multiplicative structure of the cohomology ring

We turn now to the description of the multiplicative structure of the
cohomology ring of the Dold-manifolds. These results give, in particular, the
ring structure of H∗(BO(2),Z2) by passing to the limit. Throughout this
entire section we are working with mod 2 coe�cients only, so we omit them
in the notation.

Crucial for the determination of the multiplicative structure is the ob-
servation made in Theorem 2.2.9 that the inclusion P (m,n) → P (m′, n′)
induces an epimorphism on the cellular cochain complex and on the cohomo-
logy. There is also a canonical right inverse given by

j : H∗(P (m,n)) = C∗cell(P (m,n))→ C∗cell(P (m′, n′)) = H∗(P (m′, n′)),

ϕk,l 7→ ϕk,l,

where k ≤ m and l ≤ n. This right inverse allows us to interpretH∗(P (m,n))
as a subvector space of H∗(P (m′, n′)).

One easily sees that every cocell ϕk,l ∈ Hq(P (m,n)) must already lie in
Hq(P (m − 1, n)) or Hq(P (m,n − 1)) if q = 2k + l < 2m + n. Therefore,
every element in Hq(P (m,n)) is uniquely determined by its images under the
homomorphism induced by the inclusions ι1 : P (m − 1, n) ↪→ P (m,n) and
ι2 : P (m,n− 1) ↪→ P (m,n).

Using these informations, we are able to prove inductively the following
theorem about the ring structure of the cohomology.

Theorem 2.3.1. For every m,n ≥ 0, the assignment ϕ1,0 7→ c and ϕ0,1 7→ d
extends to an isomorphism of graded algebras

H∗(P (m,n)) ∼= Z2[c, d]/ 〈cm+1, dn+1〉.

In particular,

H∗(BO(2)) ∼= Z2[c, d].

Proof. The statement is clear for m = n = 0, so let us assume that the
theorem is correct for all pairs (m,n) ∈ N2

0 with m+ n ≤ N .
For a pair (m,n) with m+n = N+1, we conclude linear independency of

{ϕk1,0∪ϕl0,1 | 2k+ l < 2m+n} from the induction hypothesis. Indeed, if one of

these elements, say ϕα1,0∪ϕ
β
0,1, is representable through a linear combination of

the others, so is ι∗j(ϕ
α
1,0∪ϕ

β
0,1). But this contradicts the induction hypothesis.

Hence, the theorem is already proven for all degrees < 2m+n. It remains to
show that ϕm1,0∪ϕn0,1 6= 0. But P (m,n) is a manifold, so we obtain, for n > 0,
from the cup-cap relation and Poincaré duality [tD08, p.443] the relation(

ϕm1,0 ∪ ϕn−1
0,1 ∪ ϕ0,1

)
∩ [P (m,n)] = (ϕm1,0 ∪ ϕn−1

0,1 ) ∩ ϕ0,1 ∩ [P (m,n)]

PD
= (ϕm1,0 ∪ ϕn−1

0,1 ) ∩ [P (m,n− 1)]

IV
= 1,

and for m > 0, the relation

ϕm1,0 ∩ [P (m, 0)] = ϕm1,0 ∩ ϕ1,0 ∩ [P (m, 0)]

= ϕm−1
1,0 ∩ [P (m− 1, 0)]

IV
= 1.
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In any case, these calculations show that ϕm1,0 ∪ ϕn0,1 is never zero, and the
�rst part of the theorem is therefore proven.

The second part follows from

H∗(BO(2)) ∼= lim
←
H∗(P (m,n)) ∼= lim

←
Z2[c, d]/ 〈cm+1, dn+1〉 ∼= Z2[c, d].

As an application, we are going to show that every proper inclusion
P (k, l) ⊆ P (m,n) is not a retract unless k = l = 0.

Corollary 2.3.2. For every pair (k, l) with 0 < k+ l, the inclusion P (k, l) ⊆
P (m,n) has no retract. In particular, the right inverse of ι∗ does not arise
from a continuous map.

Proof. Let r : P (m,n)→ P (k, l) be a retract of ι. Let c, d be the generators
of H∗(P (m,n)) as in Theorem 2.3.1 and c′, d′ the generators for H∗(P (k, l)).
Since k + l > 0, one of them must be non zero, say c′. From r ◦ ι = id we
conclude

cm = (r∗(ι∗(c)))m = (r∗(c′))
m

= r∗ ((c′)m) = r∗(0) = 0,

which contradicts the previous theorem.
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2.4. The total Stiefel-Whitney class of the
Dold-Manifolds

The aim of this section is to calculate the total Stiefel-Whitney class of the
Dold-manifolds. As in the previous section mod 2 coe�cients are understood.

Recall from Theorem 2.1.3 that we have a �bre bundle

CPm � � // P (m,n)
p // // RP n,

σ0

jj

and from the previous section that H∗(P (m,n)) ∼= Z2[c, d]/〈cm+1, dn+1〉.
The remainder of this section is reserved for the proof of the next formula.

Theorem 2.4.1. The total Stiefel Whitney class of P (m,n) satis�es the

relation

w(P (m,n)) = (1 + d)n(1 + c+ d)m+1 ∈ H∗(P (m,n)).

In particular,

w1(P (m,n)) = (m+ n+ 1) · d

w2(P (m,n)) = (m+ 1) · c+

(
m(m+ 1)

2
+
n(n+ 1)

2

)
· d2.

Simple calculations imply the following corollary, which tells us precisely
which Dold-manifolds carry a Pin− structure.

Corollary 2.4.2. P (0, n) is a Pin− manifold if and only if n ≡ 1, 2 mod 4.
P (m, 0) and P (m, 1) are Pin− manifolds if and only if m ≡ 1 mod 2. For

m > 0 and n > 1 the manifold P (m,n) carries a Pin− structure if and only

if m ≡ 1 mod 2 and

n ≡

{
1, 2 mod 4, if m ≡ 1 mod 4

0, 3 mod 4, if m ≡ 3 mod 4.

We will verify the formula for the Stiefel-Whitney class by induction over
m and n. In order to do this, we need two auxiliary lemmas for the reduction.

Lemma 2.4.3. Let γn−1 → RP n−1 be the tautological line bundle over

RP n−1. The normal bundle ν := ν (P (m,n− 1) ↪→ P (m,n)) satis�es

ν ∼= p∗γn−1

Proof. Let κ : CPm× Sn 2:1−→ P (m,n) the canonical projection, and consider
the bundle map

p∗γn−1 → ν ⊆ TP (m,n)

([z, x], v) 7→ [t 7→ κ (p, (cos(〈x, t · v〉)) · x, sin(〈x, t · v〉))],

where [t 7→ κ(. . . )] is the tangent vector at the point [z, x] ∈ P (m,n −
1) ⊆ P (m,n) represented by the curve t 7→ κ(. . . ). This map is well
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de�ned, because it does not depend on the choice of the representative
of [z, x], and it maps indeed into the normal bundle because the curve
t 7→ (p, (cos(〈x, t · v〉)) · x, sin(〈x, t · v〉)) represents an element in the normal
bundle of Sn−1 ⊆ Sn. Furthermore, this map is �bre-wise linear and obvi-
ously not the zero map, therefore a �bre-wise isomorphism since both �bres
are one-dimensional vector spaces. Additionally, it induces the identity on
the base space. Thus, the given map is a vector bundle isomorphism.

Lemma 2.4.4. The normal bundle ν := ν(P (m− 1, n) ↪→ P (m,n)) has the

total Stiefel-Whintey class

w(ν) = 1 + c+ d.

Proof. Since H1(P (m,n)) = spanZ2
{d}, H2(P (m,n)) = spanZ2

{c, d2}, and ν
is a vector bundle of rank 2, its total Stiefel-Whitney class can be completely
detected by its restriction onto �bre and base space of P (m,n), considered
as a CPm-�bre bundle over RP n.

Firstly, we have

σ∗0w(ν) = w(σ∗0ν) = w(ε⊕ γn−1) = 1 + d ∈ H∗(RP n)

because there is a vector bundle isomorphism given by

ε⊕ γn−1 → σ∗0ν.

(v1, v2) 7→ [t 7→ (σ0 ◦ π(v1), [1 : 0 : · · · : 0 : t · (v1 + i〈v2, x〉)]) , x] .

Here, pr : ε → RP n denotes the trivial line bundle, and [t 7→ . . . ] denotes a
tangent vector at the point σ0(pr(v1)). Since the curve

t 7→ [1 : 0 : · · · : 0 : t · (v1 + i〈v2, x〉)]

represents an element in ν(CPm−1 ↪→ CPm) our map indeed values in σ∗0ν.
Because of the commutativity of

CPm−1 � � incl //� v

ι ((

CPm−1 × Sn

κ
����

P (m− 1, n)

and that κ is a submersion, we have

ι∗w(ν) = w(ι∗ν) = w((κ ◦ ι)∗ν)

= w(incl∗κ∗ν)

= w
(
incl∗ν(CPm−1 × Sn ↪→ CPm × Sn)

)
= w

(
ν(CPm−1 ↪→ CPm)

)
= w(τ∨m−1) = c ∈ H2(CPm).

Here, τm−1 → CPm−1 denotes the canonical (complex) line bundle. To see
that (ν(CPm−1 ↪→ CPm)) is isomorphic to τ∨m−1, the dual bundle of τm−1,
recall that TCPm = Hom(τm, τ

⊥
m), where τ⊥m is the orthogonal complement
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of τm in εm+1 with respect to the standard hermitian metric [Mil74, p.169].
Consequently,

TCPm|CPm−1 = Hom(τm, τ
⊥
m)|CPm−1 = Hom(τm|CPm−1 , τ⊥m|CPm−1)

= Hom(τm−1, τ
⊥
m−1 ⊕ ε)

= Hom(τm−1, τ
⊥
m−1)⊕ Hom(τm−1, ε)

= TCPm−1 ⊕ τ∨m−1.

Since all elements of Hq(P (m,n)) are completely determined by the images
of ι∗ and σ∗ if q ≤ 2, the claim follows.

Now, we are going to prove the main theorem of this section.

Proof of Theorem 2.4.1. For m = n = 0, the statement is obviously true.
So, let us assume that the theorem is already proven for all m and n with
m+ n ≤ N .

Note that all wk(P (m,n)) with k ≤ 2(m− 1) + n+ 1 can be completely
described by restricting them to P (m− 1, n)

ι1
↪→ P (m,n) and P (m,n− 1)

ι2
↪→

P (m,n).
Now, with a slight abuse of notation we get, using Lemma 2.4.3,

ι∗1w(TP (m,n)) = w(ι∗1TP (m,n))

= w (TP (m− 1, n)⊕ ν (P (m− 1, n) ↪→ P (m,n)))

= w(TP (m− 1, n)) · w(ν)

= w(TP (m− 1, n)) · (1 + c+ d)
ass.
= (1 + d)n(1 + c+ d)m(1 + c+ d)

= (1 + d)n(1 + c+ d)m+1 ∈ H∗(P (m− 1, n))

= ι∗1((1 + d)n(1 + c+ d)m+1︸ ︷︷ ︸
∈H∗(P (m,n))

),

and analogously, but applying Lemma 2.4.3 instead, we get

ι∗2w(TP (m,n)) = w(ι2TP (m,n))

= w (TP (m,n− 1)⊕ ν(P (m,n− 1) ↪→ P (m,n)))

= w(TP (m− 1, n)) · w(ν(. . . ))

= w(TP (m,n− 1))(1 + d)
ass.
= (1 + d)n−1(1 + c+ d)m+1(1 + d)

= (1 + d)n(1 + c+ d)m+1 ∈ H∗(P (m,n− 1))

= ι∗2((1 + d)n(1 + c+ d)m+1︸ ︷︷ ︸
∈H∗(P (m,n))

).

Together, both computations show that

wk(P (m,n)) =
(
(1 + d)n(1 + c+ d)m+1

)
(k)

for every k ≤ 2m+ n− 1. It remains to verify the equality

w2m+n(P (m,n)) =
(
(1 + d)n(1 + c+ d)m+1

)
(2m+n)

= (m+ 1)(n+ 1)cmdn.
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But it is known (c.f [Mil74, Corollary 11.12]) that the top Stiefel-Whitney
class applied to the fundamental class gives Euler characteristic modulo 2.
Therefore, we derive

w2m+n(P (m,n)) ∩ [P (m,n)] ≡ χ(P (m,n)) mod 2

=
∑

r≤m, s≤n

(−1)dimP (r,s) mod 2

=
∑

r≤m, s≤n

(−1)2r(−1)s mod 2

= (m+ 1) ·
∑

0≤s≤n

(−1)s mod 2

≡ (m+ 1)(n+ 1) mod 2.

So, the desired equality follows from this numerical result and Poincaré du-
ality.
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2.5. Determination of the ordinary bordism groups

We are going to apply the results from the previous sections to determine
the ordinary bordism groups of BO(2). It will turn out that the ordinary
bordism groups are uniquely determined by mod 2 cohomology and the coef-
�cient groups ΩO

∗ (pt). Again, throughout this section we only work in mod
2 coe�cients and omit mentioning this in the notation. A precise statement
is given in the next theorem. The rest of this chapter is devoted to its proof.

Theorem 2.5.1. The Z2-linear extension of the assignment

[P (m,n)]⊗ [M ] 7→ [P (m,n)×M, pr1]

de�nes an isomorphism H∗(BO(2)) ⊗Z2 ΩO
∗ (pt) → ΩO

∗ (BO(2)) of ΩO
∗ (pt)

modules.

The ingredients of the proof are the ring structure ofH∗(P (m,n)) and the
Theorem of Pontrjagin and Thom that classi�es the elements of ΩO

∗ (pt) in
terms of Stiefel-Whitney numbers, see [Sto15, p.95]. Putting these informa-
tions together, we construct for every element on the left-hand-side a general
Stiefel-Whitney number giving 1 by applying it to the chosen element. This
implies injectivity, and surjectivity will then follow from a counting argument.

Proof. First, observe that the map in the theorem is well-de�ned and already
linear in the second component. Indeed, let [P (m,n)] ∈ H2m+n(BO(2))
be the homology class generated by P (m,n) and M1 bordant to M2 via
B. Hence, the singular manifold (P (m,n)× (M1 tM2), pr1) is bounded by
(P (m,n)×B, pr1). Also the ΩO

∗ (pt)-equivariance is obvious.
Now, let ξ ∈ H∗(BO(2);Z2) ⊗ ΩO

∗ (pt) be a non-zero element. It can be
written as a �nite linear combination

ξ =
∑

[P (k, l)]⊗ [M(k,l)].

Pick a summand [P (m,n)] ⊗ [M(m,n)] such that 2m + n is maximal over all
summands in the given linear combination of ξ. (We do not require that this
summand is unique.) Choose the general Stiefel-Whitney class(

pr∗1(xmyn) ∪ wI(P (m,n)
)
×M(m,n))

= cmdn ∪ wI(P (m,n)×M(m,n)) ∈ H∗(P (m,n)×M(m,n)),

where we identify H∗(BO(2)) with Z2[x, y] and H∗(P (m,n)) with the trun-
cated polynomial algebra Z2[c, d]/〈cm+1, dn+1〉. The term wI is a product of
Stiefel-Whitney classes associated to the partition I = (i1, . . . , ik) of dimen-
sion of M(m,n), in formula wI =

∏
j w

ij , such that wI(M(m,n))∩ [M(m,n)] = 1.
Such a partition exists by a theorem of Thom [Sto15, p.95].

We already calculated that pr1 : P (k, l)×M → P (k, l) ↪→ BO(2) satis�es

pr∗1(xmyn) 6= 0⇔ k ≤ m and l ≤ n.
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Since m and n are chosen to be maximal in the linear combination of ξ, we
obtain for the generalised Stiefel-Whitney class of the image of ξ under the
assignment, which is given by⊔

(k,l)

P (k, l)×M(k,l),
⊔

pr
(k,l)
1

 ,
the formula

(⊔
pr

(k,l)
1

)∗
(xmyn) ∪ wI

⊔
(k,l)

P (k, l)×M(k,l)


= pr

(m,n)
1 (xmyn) ∪ wI(P (m,n)×M(m,n))

= pr
(m,n)
1 (xmyn) ∪ wI(M(m,n)).

Here, the last equality follows from degree reasons. Indeed, the k-th Stiefel
Whitney class of P (m,n)×M(m,n) decomposes into

wk(P (m,n)×M(m,n)) =
k∑

α=0

wα(P (m,n))× wk−α(M(m,n)).

Since pr
(m,n)
1 (xmyn) is of maximal degree in H∗(P (m,n)), any summand hav-

ing a factor wα(. . . ) with α > 0 must vanish, and the last equation follows.
But (

pr
(m,n)
1 (xmyn) ∪ wI(M(m,n))

)
∩ [P (m,n)×M(m,n)]

= pr
(m,n)
1 (P (m,n)) ∩

(
wI(M(m,n)) ∩ [P (m,n)×M(m,n)]

)
= pr∗1(xmyn) ∩ [P (m,n)] = 1,

so the image of ξ is not zero by the theorem of Pontrjagin and Thom. There-
fore, the map is injective. Consequently, ΩO

k (BO(2)) contains more elements
than

⊕
α+β=kHα(BO(2))⊗Z2 ΩO

β (pt). Surjectivity can be deduced from the
Atiyah Hirzebruch spectral sequence. For every k ≥ 0, we have

#ΩO
k (BO(2)) = #

⊕
E∞α+β=k ≤ #

⊕
α+β=k

E2
α,β

= #
⊕
α+β=k

Hα(BO(2),ΩO
β (pt))

= #
(
H∗(BO(2))⊗Z2 ΩO

∗ (pt)
)

(k)
<∞.

Now, surjectivity follows from injectivity.

This theorem is actually true for any CW-pair (X,A), see [Sto15, p.108�].
The proof given there uses essentially the same strategy, but it needs more
theory to show that any element in H∗(X,A) can be represented by some
element in ΩO

∗ (X,A). In our case, where the closed cells are submanifolds, we
avoid this problem completely and are able to give an explicit description of
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this isomorphism. Note, that this theorem also applies to RP∞ and CP∞ as
well. Furthermore, this theorem implies that the AHSS for ordinary bordism
has only vanishing higher di�erentials, meaning drp,q = 0 for every r ≥ 2.
Thus, E∞p,q = E2

p,q.

Corollary 2.5.2. The inverse of the map in Theorem 2.5.1 sends Fp,q to⊕
(α,β)∈I(p,q) Hα(BO(2),ΩO

β (pt), where I(p,q) := {(α, β) |α+β = p+q, α ≤ p}.

Proof. Since unoriented bordism is a Z2-vector space, the corollary follows
from the solution of the extension problem:

Fp,q = Fp−1,q+1 ⊕ E∞p,q
= Fp−1,q+1 ⊕ E2

p,q

= Fp−1,q+1 ⊕Hp(BO(2),ΩO
q (pt)).

The stated formula follows inductively.



Chapter 3

Calculations of the main results

Having developed the necessary theory, we are in the position to calculate
the Pin− bordism groups of the classifying spaces BZ2, BSO(2), and BO(2).

The method of our choice will be the Atiyah-Hirzebruch spectral sequence
because this spectral sequence is very close to the homology theory it ap-
proximates, and allows us therefore to �nd geometric representatives for the
generators of these groups.

The structure of this chapter is fairly simple. We start in the �rst section
with the easiest case, namely ΩPin−

∗ (BSO(2)). Then we turn our attention
to the calculation of ΩPin−

∗ (BZ2), which will be done in the second section.
Finally, the hardest case, which is the determination of ΩPin−

∗ (BO(2)), will
be done in the last section of this chapter.

3.1. Calculation of ΩPin−

∗ (CP∞)

Using the Pin− bordism coe�cients listed in Corollary 1.5.2 and the cel-
lular structure of CP∞, we are in the position to calculate the Pin− bordism
groups of CP∞ up to degree 4.

The results of the involved spectral-sequence-calculations are summarised
in the next theorem. Its proof is the aim of this section.

Theorem 3.1.1. For the Pin− bordism groups of CP∞ up to degree 4, we
have the following results:

ΩPin−

0 (CP∞, pt) ∼= 0,

ΩPin−

1 (CP∞, pt) ∼= 0,

ΩPin−

2 (CP∞, pt) ∼= Z2,

ΩPin−

3 (CP∞, pt) ∼= 0,

ΩPin−

4 (CP∞, pt) ∼= Z4.

The group ΩPin−

2 (CP∞, pt) is generated by [CP 1, incl] and ΩPin−

4 (CP∞, pt)
has [CP 1 × RP 2, pr1] as generator.

Let us start with a (partial) description of the action of [S1
Lie] ∈ ΩSpin

1 (pt)
on E2

p,q. Since the multiplication with [S1
Lie] induces an isomorphism from

ΩPin−

0 (pt) to ΩPin−

1 (pt), it also induces an isomorphism E2
p,0 → E2

p,1. We
know that 0 6= [S1

Lie × S1
Lie] ∈ ΩPin−

2 (pt) is the unique element in Z8 of
order 2, see Corollary 1.5.11, so the multiplication with [S1

Lie] give rise to an
injective map E2

p,1 → E2
p,2.
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Forgetting the Pin− structure gives the following homomorphisms on the
coe�cient groups

ΩPin−

0 (pt)
∼=−→ ΩO

0 (pt),

ΩPin−

1 (pt)
·0−→ ΩO

1 (pt),

ΩPin−

2 (pt) � ΩO
2 (pt),

which carry over to the spectral sequence

PinE2
p,0

∼=−→ OE2
p,0,

PinE2
p,1

·0−→ OE2
p,1,

PinE2
p,2 �

OE2
p,2.

We have seen that the cellular di�erentials of the standard cellular chain
complex of CP∞ are always zero. Thus, E2

p,q
∼= ΩPin−

q (pt) if p is even and
non-negative. Otherwise, the groups vanish. The part of our interest is
presented in Figure 3.1.

0 1 2 3 4 5

0

1

2

3

4

Z2 0 Z2 0 Z2 0

Z2 0 Z2 0 Z2 0

Z8 0 Z8 0 Z8 0

0 0 0 0 0 0

0 0 0 0 0 0

Figure 3.1. The second page E2
p,q for p ≤ 5 and q ≤ 4 of the Atiyah-Hirzebruch

spectral sequence for ΩPin−
∗ (CP∞).

Now, we calculate the non-trivial di�erentials of our interest. The results
are listed in the next theorem.

Theorem 3.1.2.

d2
2,0 = 0, d2

4,0 6= 0,

d2
2,1 = 0, d2

4,1 6= 0.

Proof. Every di�erential of the form d2
2,q is zero because its target is space

lies in the column indexed by p = 0. By equivariance, we have

E2
p,0

d2p,0 //

·×[S1
Lie] ∼=
��

E2
p−2,q+1� _

·×[S1
Lie]

��
E2
p,1

d2p,1 // E2
p−2,2,
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Z2 0 Z2 0 0 0

Z2 0 0 0 0 0

Z8 0 Z4 0 ? 0

0 0 0 0 0 0

0 0 0 0 0 0

Figure 3.2. third page E3
p,q for p ≤ 5 and q ≤ 4 of the Atiyah-Hirzebruch spectral

sequence of ΩPin−
∗ (CP∞).

and d2
p,1 is therefore uniquely determined by d2

p,0. In particular, if d2
4,0 does

not vanish, so does not d2
4,1. Having this observation in mind, it remains to

show that d2
4,0 is not the zero map. So, let us assume the contrary. Note that

d3
4,0 is zero because its target space is, and that d4

4,0 is zero because it maps
into the column indexed by p = 0. We conclude that E∞4,0 = E2

4,0
∼= Z2. It

follows that forgetting the Pin− structure induces an isomorphism
Pin−E∞4,0 = Pin−E2

4,0 → OE2
4,0 = OE∞4,0.

So, there exists an element in OF4,0 \ OF3,1 that can be represented by a sin-
gular Pin− manifold. But we will rule this out using characteristic numbers.

Any element in OF4,0 \OF3,1 is either given by [CP 2, incl] + [M4, const] or
by [CP 2, incl] + [CP 1×RP 2, pr1] + [M4, const]. Since CP 1×RP 2 is already
a Pin− manifold, we only have to check that [CP 2, incl] + [M4, const] cannot
be represented by a Pin− manifold.

IdentifyH∗(CP∞;Z2) with Z2[x] andH∗(CP 2;Z2) with Z2[a]/〈a3〉. Using
this notation we get for the general Stiefel-Whitney class

(incl t const)∗(x) ∪ (w2 − w2
1)(CP 2 tM4) = incl∗(x) ∪ (w2 − w2

1)(CP 2)

= incl∗(x) ∪ w2(CP 2)

= a2 6= 0.

Poincaré duality implies that the associated generalised Stiefel-Whitney num-
ber is not zero. Therefore, [CP 2, incl] + [M4, const] cannot be represented by
a singular Pin− manifold. We derived the desired contradiction, and conclude
d2

4,0 6= 0.

The determination of the di�erentials gives the (partial) result for the
third page listed in Figure 3.2. We conclude E3

p,q = E∞p,q for p+ q ≤ 5.
The extension problem is easily solved. The groups in the zero-column

E∞0,q gives ΩPin−

q (pt) ⊆ ΩPin−

q (CP∞), which always splits o�. Therefore, we
deduced the isomorphisms given in Theorem 3.1.1.

Lastly, we have to �nd generators for the groups. Note that (CP 1, incl)
and (CP 1 × RP 2) are singular Pin− manifolds, which represent non-zero
elements in ΩO

∗ (CP∞) by Theorem 2.5.1. Therefore, those singular Pin−

manifolds cannot be Pin− boundaries. For algebraic reasons, these elements
must be generators.
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3.2. Calculation of ΩPin−

∗ (RP∞)

We turn now to the calculations of the �rst �ve Pin− bordism groups of
RP∞. Since these groups sit as split summands in the Pin− bordism groups
of BO(2), their calculations will be a milestone towards our �nal goal.

The result of this section are summarised in the following theorem. Its
proof is the contest of this section.

Theorem 3.2.1.

ΩPin−

0 (RP∞, pt) ∼= 0,

ΩPin−

1 (RP∞, pt) ∼= Z2, generated by [RP 1, incl],

ΩPin−

2 (RP∞, pt) ∼= Z4, generated by [RP 2, incl],

ΩPin−

3 (RP∞, pt) ∼= Z2 ⊕ Z2,

ΩPin−

4 (RP∞, pt) ∼= 0.

Generators of ΩPin−

3 (RP∞, pt) are [RP 3, incl] and [RP 1 × RP 2, pr1].

Before we begin with the calculation, let us have a closer look at the
structure of this spectral sequence. First, recall that forgetting the orienta-
tion

FORTGET: ΩSpin
∗ (RP∞)→ ΩPin−

∗ (RP∞)

induces a map between the corresponding Atiyah-Hirzebruch spectral se-
quences, see Theorem C.0.19. For q ∈ {0, 1}, this induced map SpinE2

p,q ↪→
Pin−E2

p,q is always injective. For q = 2, the resulting map is injective only
if p is even. This follows from the knowledge of the generators of GE2

p,q

and the induced map on GE1
p,q, which is given under the correspondence

GE1
p,q
∼= Ccellp (RP∞)⊗ ΩG

q (pt) by

SpinE1
p,q

//

∼=
��

Pin−E1
p,q

��

Ccellp (RP∞)⊗ ΩSpin
q (pt)

id⊗FORGET// Ccellp (RP∞)⊗ ΩPin−

q (pt).

We will do the calculation for the most interesting case q = 2 in detail. The
other cases can be treated in the same manner, but are much easier. Recall
that the group SpinE2

p,2 = Hp(RP∞,ΩSpin
2 (pt)) is generated by

RP p ⊗ [S1
Lie × S1

Lie] ∈ Ccell
p (RP∞)⊗ ΩSpin

2 (pt),

which corresponds to 4 under the identi�cation Ccell
p (RP∞) ⊗ ΩPin−

2
∼= Z8.

From the cellular boundary operator, see Theorem 2.2.2, we deduce that
RP p ⊗ [S1

Lie × S1
Lie] is a cellular boundary if and only if p is odd.

Using a similar argument, we see that the ΩSpin
∗ (pt)-action on Pin−E2

p,q is
non-zero for q = 0 and therefore injective. For q = 1, this action is non-zero
if and only if p is even.

Furthermore, the homomorphism Pin−E2
p,q → OE2

p,q is surjective for q = 0,
zero for q = 1. For q = 2, it is non-zero if and only if p is odd.
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Figure 3.3. The second page E2
p,q for p ≤ 5 and q ≤ 4 of the Atiyah-Hirzebruch

spectral sequence of ΩPin−
∗ (RP∞).

The part of the spectral sequence we are interested in is listed in Figure
3.3, and the di�erentials we are interested in are listed in the next theorem.

Theorem 3.2.2.

d2
2,0 = d2

2,1 = 0, d2
4,0 6= 0, d2

5,0 6= 0,

d2
3,0 = d2

3,1 = 0, d2
4,1 6= 0, d2

5,1 = 0.

Proof. The di�erentials d2
2,0 and d2

2,1 have their target space in the column
indexed by p = 0, so they have to be zero-maps. From the commutativity of

SpinE2
3,0

∼=
��

d23,0 // SpinE2
1,1

∼=
��

Pin−E2
3,0

d23,0 // Pin−E2
1,1

and Theorem 1.5.6 we deduce d2
3,0 = 0. Using the same argument, we derive

d2
5,0 6= 0. From ΩSpin

∗ (pt)-equivariance, we get d2
3,1 = 0 and d2

5,1 = 0. The
determination of d2

4,0 is more complicated. First, observe that any di�erential
with target space Er

1,3 has to be zero. Indeed, [RP 1×RP 2, pr1] ∈ OF1,2\OF0,3

is represented by a Pin− manifold and lies therefore in Pin−F1,2 \Pin−F0,3, too.
So, E∞1,2 must be non-zero. From E2

1,2
∼= Z2 follows that every di�erential

into Er
1,2 must vanish, in particular d3

4,0.
Now, assume d2

4,0 = 0. Then the previous discussion implies Z2
∼= E2

4,0 =

E∞4,0. Since forgetting the Pin− structure Pin−E2
4,0 → OE2

4,0 is an isomorphism,
Pin−E∞4,0 → OE∞4,0 is one, too. Therefore, there is an element OF4,0 \ OF3,1

that can be represented by a singular Pin− manifold. We use characteristic
numbers to rule this out.

By Corollary 2.5.2, any element ξ ∈ OF4,0 \ OF3,1 can be written as

ξ =

{
[RP 4, incl] + [M4, const]

[RP 4, incl] + [RP 2 × RP 2, pr1] + [M4, const].
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Identify H∗(RP∞;Z2) with Z2[x] and H∗(RP 4;Z2) with Z2[a]/〈a5〉. Hence,
the generalised Stiefel-Whitney class(

w2(RP 4 tM4)− w2
1(RP 4 tM4)

)
∪ incl∗x2

=
(
w2(RP 4)− w2

1(RP 4)
)
∪ incl∗(x2)

= (0− a2) · a2

= a4 6= 0

gives by Poincaré duality a non-zero generalised Stiefel-Whitney number. So,
in the �rst case, ξ cannot be represented by a singular Pin− manifold. In
the second case, set N := RP 4 t RP 2 × RP 2 tM4, and identify H∗(RP 2 ×
RP 2;Z2) with Z2[a, b]/〈a3, b3〉 as well as H∗(RP 4;Z2) with Z2[c]/〈c5〉. Then,
the generalised Stiefel-Whitney number(

w2(N)− w1(N)2
)
∪ (incl ∪ pr1 ∪ const)∗(x2) ∩ [N ]

=
(
w2(RP 4)− w1(RP 4)2 ∪ incl∗(x2)

)
∩ [RP 4]

+
((
w2((RP 2)2) + w2

1((RP 2)2)
)
∪ pr∗1(x2)

)
∩ [(RP 2)2]

= c4 ∩ [RP 4] +
(
(a2 + ab+ b2 − (a+ b)2) ∪ a2

)
∩ [RP 2 × RP 2]

= c4 ∩ [RP 4] + a3b ∩ [RP 2 × RP 2]

= 1 + 0 = 1 6= 0

shows that the second possible description for ξ cannot be the boundary of a
singular Pin− manifold. Consequently, no element in OF4,0 \ OF3,1 can be hit
by a singular Pin− manifold, and, therefore, d2

4,0 must not be the zero map.
From this result we deduce d2

4,1 6= 0 using ΩSpin
∗ (pt) equivariance.

The implications for the third page are presented in Figure 3.4.
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Figure 3.4. The third page for p ≤ 5 and q ≤ 4 for the Atiyah-Hirzebruch spectral

sequence approximating ΩPin−
∗ (RP∞).

From this table, we deduce E3
p,q = E∞p,q for p + q ≤ 4 because, for every

(p, q) with p+ q ≤ 4 and r ≥ 0, we have drp+q = 0.
Let us discuss now the extension problem. One easily reads o�

ΩPin−

0 (RP∞) ∼= Z2

ΩPin−

1 (RP∞) = ΩPin−

1 (pt)⊕ ΩPin−

1 (RP∞, pt) ∼= Z2 ⊕ Z2

ΩPin−

4 (RP∞) ∼= 0.
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The generator of ΩPin−

0 (RP∞) is just the point. The �rst summand of
ΩPin−

1 (RP∞) is generated by [S1
Lie] as we have shown in Corollary 1.5.2,

while the second summand is generated by [RP 1, incl] because it generates
E2

1,0 = E∞1,0 and lies indeed in ker const∗ ∼= ΩPin−

1 (RP 1, pt).
The extension problem for ΩPin−

3 (RP∞) is also not so hard. Since forget-
ting the Pin− structure gives an isomorphism

Pin−E∞1,2 ⊕ Pin−E∞3,0 = Pin−E2
1,2 ⊕ Pin−E2

3,0

∼=−→ OE∞1,2 ⊕ OE∞3,0 = OE∞1,2 ⊕ OE∞3,0

and this sums are the associated graded module of the corresponding bordism
groups in degree three, it already gives an isomorphism between the bordism
groups

ΩPin−

3 (RP∞)
FORGET−−−−−→ ΩO

3 (RP∞) ∼= Z2
2.

Thus, generators of ΩPin−

3 (RP∞) are given by [RP 1 × S1
Lie × S1

Lie, pr1] and
[RP 3, incl].

Solving the extension problem of ΩPin−

2 (RP∞) heavily relies on the next
lemma.

Lemma 3.2.3. The abelian group ΩPin−

2 (RP∞) can be generated by two ele-

ments.

Before we prove the lemma, let us harvest its consequences. The split
ΩPin−

2 (RP∞) ∼= ΩPin−

2 (pt)⊕ΩPin−

2 (RP∞, pt) and Lemma 3.2.3 imply that the
relative group ΩPin−

2 (RP∞, pt) must be cyclic. Since the associated graded
module E∞1,1 ⊕ E∞2,0 contains four elements, the relative group is isomorphic
to Z4. So the theorem is proven if Lemma 3.2.3 is.

Proof of Lemma 3.2.3. We will show that any element in ΩPin−

2 (RP∞) lies
in the span of [RP 2, const] and [RP 2, incl].

Note that [S1 × S1
Lie, pr1] ∈ ΩPin−

2 (RP∞, pt) generates E2
1,1 = E∞1,1, and it

generates therefore a subgroup of order 2. On the other hand, the element
[RP 2, incl]−[RP 2, const] ∈ ΩPin−

2 (RP∞, pt) generates E∞2,0 because [RP 2, incl]
does it. By Theorem 1.3.7, we get

[RP 2, incl]− [RP 2, const] = [RP 2#RP 2, incl#const]

= [K, f ],

where K is the Klein bottle.
Note that [K, f ] lies in F2,0\F1,1, but [S1×S1

Lie, pr1] does not. We conclude

[S1 × S1
Lie, pr1] + [K, f ] = [S1 × S1

Lie#K, pr1#f ] 6= 0.

But, by the classi�cation theorem for closed surfaces, we know that

S1 × S1
Lie#K ≈ S1 × S1

Lie#RP 2#RP 2

≈ RP 2
(1)#RP 2

(2)#RP 2
(3)#RP 2

(4),

where RP 2
(j) refers to a real projective plane with some appropriate chosen

Pin− structure. Let ϕ denote the composition of these two Pin− structure
preserving di�eomorphism and set g := (pr1#f) ◦ ϕ. Hence,

[S1 × S1
Lie, pr1] + [K, f ] = [RP 2

(1)#RP 2
(2)#RP 2

(3)#RP 2
(4), g].
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It was shown in Example 1.3.9 that every Pin− structure on a connected sum
of real projective planes can be obtained from the connected sum procedure
by choosing appropriate Pin− structures on the summands. It remains to
show that every map g : #kRP 2 → RP∞ can be homotopied into #fj, where
fj is either homotopic to the constant map or the inclusion. Since RP∞ =
K(Z2, 1), the representability theorem states that

[X,RP∞]→ H1(X,Z2)

[f ] 7→ H1(f)(x)

is bijection [DK01, Theorem 7.22], which is natural with respect to continuous
maps. Thus, we can prove this statement using cohomology. Indeed, from the
Mayer-Vietoris sequence we get a diagram of isomorphic cohomology groups
in mod 2 coe�cients

H1(#n
j=1RP 2)

⊕incl∗∼=
��

H1(RP 2 \D2)⊕
⊕n−1

j=2 H
1(RP 2 \ (D2 tD2))⊕H1(RP 2 \D2)

⊕n
j=1 H

1(RP 2).

⊕incl∗∼=

OO

The naturality of the bijection now implies that the sets [#n
j=1RP 2,RP∞]

and [
⊔n
j=1 RP 2,RP∞] have the same number of elements. Since any element

in H1(RP 2\D2)⊕ . . . H1(RP 2\D2) is given by some ⊕incl∗#(fj), we deduce
from bijectivity that these map build the whole set [RP 2,RP∞]. Moreover,
two sums #jf

1
j and #f 2

j are homotopic if and only all their summands f 1
j ,

f 2
j are homotopic.
Consequently, the element [S1 × S1

Lie#K, pr1#f ] lies in the subgroup of
ΩPin−

2 (RP∞) generated by [RP 2, incl] and [RP 2, const]. Therefore, every ele-
ment does.

Corollary 3.2.4. ΩPin−

2 (RP∞, pt) is cyclic.

Proof. If we assume the contrary, then the set

ΩPin−

2 (RP∞) = ΩPin−

2 (pt)⊕ ΩPin−

2 (RP∞, pt)

must have at least three generators; this contradicts the previous lemma.
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3.3. Calculation of ΩPin−

∗ (BO(2)) in low degrees

We are heading to the main results of this thesis, namely the determina-
tion of ΩPin−

p (BO(2)) for p ≤ 4.
Recall that we have a CP∞-�bre bundle structure

CP∞ � � ι // BO(2) π // // RP∞
σ

ii

on BO(2) and that the section σ gives a splitting

π∗ ⊕ (id− σ∗ ◦ π∗) : ΩPin−

∗ (BO(2)) ∼= ΩPin−

∗ (RP∞)⊕ kerπ∗.

We made a huge step towards this goal by determining the split summand
ΩPin−

p (RP∞) ⊆ ΩPin−

p (BO(2)). With the help of the splitting property of the
Atiyah-Hirzebruch spectral sequence, see Theorem C.0.21, we will calculate
the other summand kerπ∗. The next theorem summarises the results we are
going to achieve.

Theorem 3.3.1. For the kernel groups we have the following results:

kerπ0 = 0,

kerπ1 = 0,

kerπ2 = Z2,

kerπ3 = Z2,

kerπ4 = Z2 ⊕ Z2,

where [P (1, 0), incl] generates kerπ2, [P (1, 1), incl] generates kerπ3, and the

singular manifolds [P (1, 2), incl] and [P (1, 0) × P (0, 2), pr1] form a basis of

kerπ4.

As in the sections before, we will prove this theorem with the help of the
Atiyah-Hirzebruch spectral sequence. By Lemma 2.2.5 and Example 2.2.4,
its second page

E2
p,q = ker

(
πp : Hp(BO(2),ΩPin−

q (pt))→ Hp(RP∞,ΩPin−

q (pt))
)

is partially described by Figure 3.5. Next, we list the di�erentials we are
interested in.

Theorem 3.3.2.

1. drp,q = 0 for every r ≥ 2 and p ≤ 3.
2. d2

4,0 6= 0.
3. Every di�erential with target Er

2,2 vanishes for every r ≥ 2.
4. d2

5,0 6= 0.

From this theorem we deduce the result for the third page of the spectral
sequence listed in Figure 3.6.

Since d3
5,0 has E

3
2,2 as target space, we conclude from the previous theorem

that it must be zero. Therefore, we get E3
p,q = E∞p,q if p+ q ≤ 4.
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0 1 2 3 4 5

0

1

2

3

4

0 0 Z2 Z2 Z2
2 Z2

2

0 0 Z2 Z2 Z2
2 Z2

2

0 0 Z2 Z2 J Z2
2

0 0 0 0 0 0

0 0 0 0 0 0

Figure 3.5. The second page E2
p,q for p ≤ 5 and q ≤ 4 of the Atiyah-Hirzebruch

spectral sequence for the kernel of ΩPin−
∗ (π). Here, J = Z2 ⊕ Z8.

0 1 2 3 4 5

0

1

2

0 0 Z2 Z2 Z2 Z2

0 0 0 0 ? ?

0 0 Z2 ? ? ?

Figure 3.6. The third page E3
p,q for p ≤ 5 and q ≤ 4 of the Atiyah-Hirzebruch

spectral sequence for the kernel of ΩPin−
∗ (π).

Before we prove the theorem, let us consider the extension problem be-
cause it can be done rather easily. Forgetting the Pin− structure gives a
monomorphism

Hp

(
BO(2),ΩPin−

q (pt)
)
→ Hp

(
BO(2),ΩO

q (pt)
)

if q = 0 or if q = p = 2. The case q = 0 follows from the fact that forgetting
the Pin− structure gives an isomorphism between the zero coe�cient groups.
For the case p = q = 2, observe that both homology groups are generated by
P (1, 0)⊗ [RP 2].

Thus, forgetting the Pin− structure gives an monomorphism⊕
k=p+q

Pin−E∞p,q −→
⊕
k=p+q

ker Oπ∞p,q ⊆
⊕
k=p+q

OE∞p,q

for k ≤ 4 because ker Oπ∞∗,∗ = ker Oπ2
∗,∗. Therefore, it also induces a mono-

morphism between the kernels

ΩPin−

k (BO(2)) ⊇ ker Pin−πk → ker Oπk ⊆ ΩO
k (BO(2)).

Since the right-hand-side is a Z2-vector space, the left-hand-side must be
one, too. Consequently, kerπ4 isomorphic to Z2 ⊕ Z2 instead of Z4, and the
extension problem is solved.

Calculations of the di�erentials

We turn now to the veri�cation of Theorem 3.3.2. This will be done by
a sequence of lemmas.
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Lemma 3.3.3. For every r ≥ 2 and p ≤ 3, we have drp,q = 0.

Proof. The target space of drp,q is E
r
p−r,q+r−1 = 0.

Lemma 3.3.4. Every di�erential with target space Er
2,2 vanishes.

Proof. The element [P (1, 0)× RP 2, pr2] ∈ Pin−F2,2 ⊆ ΩPin−

4 (BO(2)) satis�es

π4

(
[P (1, 0)× RP 2, pr2]

)
= [P (1, 0)× RP 2, π ◦ pr2]

= [P (1, 0)× RP 2, const]

= 0 ∈ ΩPin−

4 (pt),

so it lies indeed in kerπ4. Since [P (1, 0) × RP 2, pr2] lies in OF2,2 \ OF1,3,
[P (1, 0)×RP 2, pr2] lies in Pin−F2,2\Pin−F1,3. From this we deduce E∞2,2 6= 0. By
Lemma 3.3.3, the di�erentials dr2,2 with r ≥ 2 vanish. So, Er

2,2 surjects onto
E∞2,2 for every r ≥ 2. Now, if there would be a non trivial di�erential mapping
into Er

2,2, then Er+1
2,2 = 0, and therefore E∞2,2 = 0. But this contradicts the

previous observation.

Corollary 3.3.5. d2
4,1 = 0 and d3

5,0 = 0.

Lemma 3.3.6. d2
4,0 6= 0.

Proof. Let {CP∞Er
p,q} be the Atiyah-Hirzebruch spectral sequence associated

to ΩPin−

∗ (CP∞). The inclusion

CP∞ � � ι // BO(2)

induces a map on spectral sequences

CP∞E
r
p,q

ιrp,q // Er
p,q

because π ◦ ι = const. The map induces an inclusion if r = 2 and q ∈ {0, 1}.
Therefore, we conclude from the commutativity of the diagram

CP∞E
2
4,0
� � ι4,0 //

d24,0 6=0

��

E2
4,0

d24,0
��

Z2
∼= CP∞E

2
2,1
� �

ι2,1
// E2

2,1
∼= Z2

that the right di�erential is also non-zero.

Lemma 3.3.7. d2
5,0 6= 0.

Proof. First, note that E∞5,0 = E2
5,0/ ker d2

5,0. Thus, if d
2
5,0 = 0, the isomorph-

ism E2
5,0 → kerπ2

5,0 ⊆ OE2
5,0 would induce an isomorphism E∞5,0 → kerπ∞5,0 =

kerπ2
5,0 ⊆ OE2

5,0. So, there would be an element [X, f ] in [P (2, 1), incl] +

im
[
incl∗ : Ω5(BO(2)(4))→ ΩO

5 (BO(2))
]
that can be represented by a singular

Pin− manifold and lies in the kernel of Oπ5.
By applying id − (σ ◦ π)∗ to the generators of ΩO

5 (BO(2)) described in
Theorem 2.5.1, we conclude that [X, f ] is either represented by

[P (2, 1), incl]− [P (2, 1), σ ◦ π]
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or

[P (2, 1), incl]− [P (2, 1), σ ◦ π] +
[
P (1, 1)× RP 2, incl ◦ pr1

]
−
[
P (1, 1)× RP 2, σ ◦ π ◦ pr1

]
.

Under the identi�cation H∗(BO(2);Z2) ∼= Z2[x, y], we will verify that
[X, f ] satis�es in both cases(

(w2 − w2
1)(X) ∪ f ∗(x · y)

)
∩ [X] = 1,

which gives a contradiction. To this end, observe that (σ ◦ π)∗(x · y) = 0
because the homomorphism factors through H3(RP 1) = 0. Since the gener-
alised Stiefel-Whitney numbers are additive under disjoint unions, the stated
equation will follow from the next two calculations. Identify H∗(P (2, 1);Z2)
with Z2[c, d]/〈c3, d2〉 and H∗(P (1, 1) × RP 2) with Z2[c, d, a]/〈c2, d2, a3〉 as
described in Theorem 2.3.1. Then we get(

(w2 − w2
1)(P (2, 1)) ∪ incl∗(x · y)

)
∩ [P (2, 1)]

=
(
(c− d2) ∪ c · d

)
∩ [P (2, 1)]

= (c2 · d) ∩ ([P (2, 1)]) = 1,

and (
(w2 − w2

1)(P (1, 1)× RP 2) ∪ incl∗(x · y)
)
∩ [P (1, 1)× RP 2]

=
(
(d · a+ a2 − d2 − a2) ∪ c · d

)
∩ [P (1, 1)× RP 2]

=
(
a · c · d2

)
∩ [P (1, 1)× RP 2] = 0 ∩ [P (1, 1)× RP 2] = 0.

Even better, the proof shows that [P (2, 1), incl] ∈ E2
5,0 does not lie in the

kernel of d2
5,0.

Remark 3.3.8. The same argument shows that an arbitrary element [X, f ] in
[P (1, 3), incl] + im

[
incl5 : ΩO

5 (BO(2)(4))→ ΩO
5 (BO(2))

]
, that also lies in the

kernel of Oπ5, cannot be represented by a singular Pin− manifold. Indeed,(
(w2 − w2

1) ∪ incl∗(x · y)
)
∩ [P (1, 3)] =

(
(0 + d2) ∪ c · d

)
∩ [P (1, 3)] = 1,

and, therefore, any [X, f ] yields(
(w2 − w2

1)(X) ∪ f ∗(x · y)
)
∩ [X] = 1.

Consequently, [P (1, 3), incl] ∈ E2
5,0 does not lie in ker d2

5,0. The same is true
for [P (2, 1), incl] ∈ E2

5,0. By a dimension count we conclude

Z2
∼= ker d2

5,0 = spanZ2
{[P (1, 3), incl] + [P (2, 1), incl]} ⊆ E2

5,0.

Finally, we determine the generators of the kernel kerπ∗. It su�ces to �nd
enough generators in kerπk that carry a Pin− structure and do not represent
the zero element in ΩO

k (BO(2)). Note that all singular Pin− manifolds listed
in Theorem 3.3.1 are non-zero in ΩO

∗ (BO(2)) by Theorem 2.5.1 and that they
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carry a Pin− structure as one can easily calculate using Theorem 1.2.10 com-
bined with Theorem 2.4.1. The two four-dimensional singular Pin− manifolds
obviously lie in the kernel of π4 because ΩPin−

4 (RP∞) = 0.
Since P (1, 0) = CP 1 = S2 has D3 as Pin− boundary, we get

π2([P (1, 0), incl]) = [P (1, 0), π ◦ incl]

= [P (1, 0), const]

= 0 ∈ ΩPin−

2 (pt) ⊆ ΩPin−

2 (RP∞).

To detect [P (1, 1), incl] as generator for kerπ3, we use the knowledge of
ΩPin−

3 from the previous section.

Lemma 3.3.9. π3([P (1, 1), incl]) = [P (1, 1), π] = 0.

Proof. Since the image of π ◦ incl : P (1, 1)→ RP∞ lies in RP 1, the object of
our interest must be zero or [RP 1×RP 2, pr1]. However, since w2(P (1, 1)) = 0,
we get

(π∗(x) ∪ w2(P (1, 1))) ∩ [P (1, 1)] = 0,

while(
pr∗1(x) ∪ w2(RP 1 × RP 2)

)
∩ [RP 1 × RP 2] = (a ∪ b2) ∩ [RP 1 × RP 2] = 1.

Here, x denotes the generator ofH∗(RP∞;Z2) ∼= Z2[x] and a, b the generators
of H∗(RP 1×RP 2;Z2) ∼= Z2[a, b]/〈a2, b3〉. Therefore these two singular Pin−

manifolds cannot be bordant to each other and [P (1, 1), π] must be zero.

Now, Theorem 3.2.1, Theorem 3.3.1, and Corollary 1.5.2 imply the solu-
tion of the motivating question of this thesis.

Theorem 3.3.10 (Main-Theorem). The �rst �ve Pin− bordism groups

of BO(2) are given by

ΩPin−

0 (BO(2)) ∼= Z2

ΩPin−

1 (BO(2)) ∼= Z2 ⊕ Z2

ΩPin−

2 (BO(2)) ∼= Z8 ⊕ Z4 ⊕ Z2

ΩPin−

3 (BO(2)) ∼= Z2
2 ⊕ Z2

ΩPin−

4 (BO(2)) ∼= Z2
2.

The generators are listed in the Theorems mentioned above.





Appendix A

Bundles and Classifying Spaces

We recall brie�y basic facts about principal bundles and their classifying
spaces. A nice introductions to principal G-bundles can be found in [tD08]
and the appendix of [LM89].

A.1. Basic bundle theory

This section is a brief summary of Appendix C of [LM89]. No originality
is claimed here.

De�nition A.1.1. Let G be a topological group. A tuple (P,B, π;R) con-
sisting of a continuous map π : P → B between two topological spaces P and
B and a continuous right action r : P ×G→ P is called a principal G-bundle
if the following conditions are satis�ed:
1. The right action preserves the �bres: For all p ∈ P and g ∈ G we have
π(r(x, g)) = π(p).
2. There is an open cover {Uα}α∈A of B and equivariant homeomorphisms
Φα satisfying

π−1(Uα)
Φα //

π
$$

Uα ×G

pr1zz
Uα.

The action on Uα × G is given by ((x, g), h) 7→ (x, gh). An open subset
Uα as in 2. is called a trivialisation domain.

De�nition A.1.2. A morphism between two principal G-bundles Pj
πj−→ Bj

is a continuous map F : P → P ′ that is equivariant with respect to the right
actions of the bundles.

Two principal G-bundles P, P ′ over the same base space are called equi-

valent if there exists a morphism between them that induces the identity on
the base space.

De�nition A.1.3 (Cocycle). Let B a topological space and {Uα}α∈A be an
open cover of B. A 1-cocycle, or simply cocycle, {gαβ} is a familiy of con-
tinuous functions gαβ : Uαβ = Uα ∩ Uβ → G satisfying the cocycle condition:

gαβgβγgγα = 1 ∀α, β, γ ∈ A,
gαα = 1 ∀α ∈ A.

Analogously, a 0-cocycle {gα} is a family of continuous function gα : Uα → G
such that gαg

−1
β = 1 on Uα,β for every α, β ∈ A.
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De�nition A.1.4 (non-commutative Čech cohomology). Two cocycles {gαβ}
and {g′αβ} on an open cover U are equivalent if there is a family of continuous
functions gα : Uα → G such that

g′αβ = g−1
α gαβgβfor allα, β.

We de�ne H1(U , G) to be the set of equivalence classes of cocylces on U . If
V is a re�nement of U , that means for every V ∈ V there is an UV ∈ U with
V ⊆ UV , then the restriction to the smaller subsets gives a well-de�ned map
rVU : H1(U ;G) → H1(V ;G) satisfying rWU = rWV ◦ rVU . Therefore we can
de�ne

Ȟ1(B;G) := lim
→

H1(U ;G).

Analogously, we de�ne H0(U ;G) to be set of all 0-cocylces and

Ȟ(B;G) = lim
→

H0(U ;G).

Note that for every open cover U the set H0(U ;G) is nothing but the set
of continuous functions from B to G and so is Ȟ0(B;G), too. If G is abelian,
then those groups agree with the usual Čech cohomolgy.

Theorem A.1.5. There is a one-to-one correspondence between the iso-

morphism classes of principal G-bundles over the space B and elements in

Ȟ1(B;G). This correspondence is natural with respect to continuous maps

f : C → B.

Theorem A.1.6 (long exact Hirzebruch sequence). Let B be paracompact.

A short exact sequence of topological groups

1 // K i // G
j // K // 1

with a local section over some neighbourhood of the unit 1H induces a long

exact sequence

0 // Ȟ0(B;K)
i0 // Ȟ0(B;G)

j0 // Ȟ0(B;H)
δ0 // . . .

. . .
δ0 // Ȟ1(B;K)

i1 // Ȟ1(B;G)
j1 // Ȟ1(B;H)

of pointed sets. This sequence is natural with respect to continuous maps. If

K is central in G, then this sequence can be extended to

. . . // Ȟ1(B,G)
j1 // Ȟ1(B;H)

δ1 // Ȟ2(B;K).

Proof. We only give the de�nition of the connecting homomorphisms δ0 and
δ1 and verify the exactness at H1(B;H) in the case that K is central in G.

Set δ0({hα}) = {kαβ}, where kαβ is de�ned as follows: Use the local
section around the 1H to lift {hα} to a family of continuous function {gα}.
Since, by de�nition, hα ·h−1

β |Uαβ = 1, we conclude gα ·g−1
β =: kαβ takes values
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in K = ker j. Obviously, {kαβ} is a 1−cocycle. Observe that di�erent lifts
give equivalent cocycles.

Analogously, we de�ne

δ1({hαβ}) = {gαβgβγgγα} =: {wαβγ},

where gαβ is a lift of hαβ. The map does not depend on the choice of the
representative because of

δ1({h−1
α hαβhβ}) = {g−1

α gαβgβg
−1
β gβγgγg

−1
γ gγαgα}

= {g−1
α gαβgβγgγα︸ ︷︷ ︸

∈K

gα} = δ1({hαβ}).

Neither it depends on the choice of the lifts because they only di�er by a
coboundary as the following calculation shows:

{gαβgβγgγα} = {ḡαβkαβ ḡβγkβγ ḡγαkγα}
= {ḡαβ ḡβγ ḡγαkαβkβγkγα}.

Now, δ1 ◦ j1 is the constant map with value {1}, so im j1 ⊆ ker δ1. For
the converse, let us assume that δ1({hαβ}) is cohomologous to {1}. This is
equivalent to

gαβgβγgγα = kαβkβγkγα.

Then {ḡαβ} = {gαβkβα} is another lift of {hαβ} which happens to be a cocylce
as the previous calculation shows.

A.2. Numerable bundles

The source of this section is chapter 13 and chapter 14.3 of [tD08].

De�nition A.2.1. Let B be a topological space. A covering {Uα}α∈A is
called numerable if there is a locally �nite partition of unity (tα)α∈A with
supp(tα) ⊆ Uα.

A principal G-bundle is called numerable if it has a numerable covering
of trivialisation domains.

Lemma A.2.2. Let P
π−→ B be a numerable bundle and f : Y → X be

continuous. Then f ∗P is a numerable bundle over Y .

Theorem A.2.3. Every open cover of a paracompact space is numerable.

Theorem A.2.4. Let P
π−→ B × [0, 1] be a numerable principal G-bundle.

Then there exists an equivariant map R : P → P over r : B × [0, 1] → B ×
[0, 1], (b, t) 7→ (b, 1) which is the identity on P |B×1 and (R, r) is a pullback.

Corollary A.2.5. Let P
π−→ C be a numerable principal G-bundle. Further-

more, let f, g : B → C be two homotopic maps. Then f ∗P is isomorphic to

g∗P .
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A.3. Classifying spaces

The source for this section is chapter 14.4 of [tD08] unless stated other-
wise.

De�nition A.3.1 (classifying space). Let G be a topological group and
B(B;G) be the set of equivalence classes of numerable principal G-bundles
over the topological space B. A topological space BG is called classifying

space (of G) if there is a numerable bundle EG → BG such that for every
topological space B the assignment

[B;BG]→ B(B;G)

[f ] 7→ f ∗EG

is a bijection. The principal G-bundle EG is called universal.

Theorem A.3.2. Any topological group has a classifying space BG and it is

unique up to homotopy equivalence.

Sketch of proof. Existence of the universal principal G-bundle follows from
Milnor's join construction [Mil56]

EG = G ∗G ∗G ∗ . . . ,

and therefore BG = EG/G exists. Uniqueness follows from general nonsense.

Remark A.3.3. IfG is a countable CW-group, i.e. a CW-complex with cellular
group multiplication and cellular inversion, the join construction, endowed
with the weak topology (quotient topology) instead of the Milnor topology,
becomes a CW-complex. Milnor showed in his article [Mil56] that this join
is still a universal principal G-bundle. The classifying space BG = EG/G
inherits a cell structure, too. This observation is quite useful, because the
orthogonal groups O(n) are cellular groups. A cell structure on SO(n) making
the multiplication and inversion cellular is described in Section 3.D in [Hat02].
It is easy to show that the conjugation with the re�ection at the hyperplane
orthogonal to e1 = (1, 0 . . . ) is also cellular. Thus, O(n) = SO(n)oZ2 is also
a cellular group, and so are Pin±(n), Spin(n).

Proposition A.3.4. The assignment G 7→ BG is functorial.

Theorem A.3.5. A principal G-bundle P → B is universal if and only if

the total space P is contractible.

Example A.3.6. A model for BO(1) = BZ2 is given by RP∞. Indeed, we
have a two-sheeted covering

Z2
// S∞ // RP∞

and since S∞ is contractible, conclude from Theorem A.3.5 that S∞ is a
universal principal Z2-bundle. Thus RP∞ is a classifying space.

Analogously, the S1 �bre bundle structure

S1 // S2∞+1 // CP∞
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identi�es CP∞ as BS1 = BU(1). More generally, we have

BO(n) = GrR(n,∞) = lim
N→∞

GrR(n,N),

BU(n) = GrC(n,∞) = lim
N→∞

GrC(n,N).

Note that the Grassmannians are CW-complexes. A cell decomposition is
given by the Schubert cells, see [Mil74, p.74�] for more details.

Theorem A.3.7. Let G be a topological group, H ⊆ G a subgroup and

N ⊆ G a normal subgroup. Then there are models for the classifying space

such that the maps

G/H �
� // BH

Bι // BG,

BN �
� Bι // BG

Bπ // B(G/N)

are �bre bundles.

We address the question for which groups G a classifying space BG is
of the homotopy type of a CW-complex. As we have seen above, Milnor
proved in [Mil56] that a classifying space possesses a CW-structure if the
topological group G is a countable CW group, i.e., there is CW-structure on
G with countably many cells such that the map (x, y) 7→ x−1y is cellular.
Although it seems likely that matrix groups have such a cell decomposition,
a strict veri�cation should be quite cumbersome.

Theorem A.3.8. Let G be a matrix group or a covering of a matrix group

with countable �bre. Then BG is of the homotopy type of a CW-complex.

Proof. Firstly, we may assume that G is compact because it classifying space
is homotopic to the classifying space of its maximal compact subgroup [tD08,
p.348].

Let G be a compact matrix group. Since O(n) is the maximal subgroup
of GL(n), by de�nition, G ⊆ O(n) must be a subgroup. So from Theorem
A.3.7 we have a �bre bundle structure

O(n)/G // BG
Bι // BO(n) = GrR(n,∞) .

Since a �bre bundle over a paracompact space is a �bration, see [tD08,
Thm.13.4.3], O(n)/G as a manifold is of the homotopy type of a CW-complex,
see [FP90, Cor.5.2.4], and GrR(n,∞) is a path connected CW-complex, we
conclude from Theorem 5.4.2 in [FP90] that BG is of the homotopy type of
a CW -complex.

A covering p : G→ H ⊆ O(n) gives a short exact sequence

1 // ker p �
� // G

p // // H // 1

with discrete kernel. Clearly, every countable discrete group has a count-
able CW-structure consisting of 0-cells only. Therefore, any map is cellu-
lar and, by Theorem 5.2 of [Mil56], B(ker p) is homotopy equivalent to a
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CW-complex. By the previous discussion, BH is homotopy equivalent to
a CW-complex. Pull back this �bre bundle with the homotopy equival-
ence to obtain a B ker p-�bre bundle over a CW-complex which is homotopy
equivalent to BG. Therefore, we might assume that BH is a CW-complex
in the �rst place and since any CW-complex is paracompact, we see that
Bp : BG → BH is a �bration having CW-complexes as base and �bres.
Now, we apply Theorem 5.4.2 in [FP90] to conclude that BG is homotopy
equivalent to a CW-complex.

A.4. Reductions of principal bundles

De�nition A.4.1. Let λ : H → G be a homomorphism of topological groups
and P → B be a principal G-bundle. A (H, λ)-reduction of P , or simply
H-reduction, if it is clear which homomorphism is used, is a principalH-bundle
Q → B, together with an equivariant map ρ : Q → P covering the identity
on B.

Two (H, λ)-reductions ρj : Qj → P are called equivalent if there is an
equivariant map θ such that the following diagram

Q1
θ //

ρ1
��

Q2

ρ2
��

P
id // P

commutes.

Theorem A.4.2. Let P → B be a principal G-bundle. Then the following

assertions are equivalent:

1. There exists a (H, λ)-reduction for P .
2. There is a principal H-bundle Q such that P ∼= Q×(H,λ) G.
3. There is a H-valued cocylce {hαβ} such that P is represented by the

cocycle {λ(hαβ)}.
4. In the case that λ is an inclusion of a subgroup there exists a continuous

equivariant map f : P → G/H such that Q = f−1(g0/H), for some g0 ∈
G.

If P is additionally numerable, then the assertions are equivalent to:

5. The diagram

B
fP //

fQ !!

BG

BH

Bλ

OO

commutes upto homotopy.

Proof. For the equivalence of the �rst four statements see [Bau14]. Observe
that condition 5 is equivalent to condition 2. Indeed, if 4 holds, then

P ∼= f ∗PEG = (Bλ ◦ fQ)∗EG = f ∗Q (Bλ∗EG)

∼= f ∗Q
(
EH ×(H,λ) G

)
= f ∗QEH ×(H,λ) G

∼= Q×H,λ G.
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Conversely, if P ∼= Q×H,λG = f ∗QEH ×(H,λ) G, then the pullback of Bλ ◦ fQ
and fP give isomorphic principal bundles, and fP and fQ ◦ Bλ must be
therefore homotopic.
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Bordism theories

De�nition B.0.1 (stable structures). Let G = {Gn, ϕn, ρn} be a sequence
of topological groups together with continuous homomorphisms ϕn : Gn →
Gn+1 and ρn : Gn → O(n) satisfying

Gn
ϕn //

ρn
��

Gn+1

ρn+1

��
O(n) �

� // O(n+ 1).

The last morphism is just given by the canonical inclusion

A 7→
[
A 0
0 1

]
.

We call this sequence a stable G structure.
A stable G structure on a principal O(n)-bundle P is a sequence of prin-

cipal Gn-bundles over the same base spaceM and equivariant maps over idM
making the following diagram

Qn
//

��

. . . // Qn+k
//

��

Qn+k+1
//

��

. . .

P �
� // . . . �

� // P ×O(n) O(n+ k) �
� // P ×O(n) O(n+ k + 1) �

� // . . .

commutative. Note that all maps in the diagram are part of the structure.
Equivalently, one can de�ne stable G structures using classifying spaces as
it is done in [Sto15] in an even more general setting.

Two stable structures G,G′ are equivalent if there is a m ∈ N and a
sequence of equivariant maps θn : Qn → Q′n starting at m that commutes
with all maps in the de�nition of a stable structure and covers the identity
of the standard orthonormal stable structure . . . P ×O(m) O(m + n − 1) ↪→
P ×O(m) O(m+ n) . . . .

Example B.0.2. In Lemma 1.2.15, we have shown that possessing a Pin±

structure is a stable property. The sequence Pin± is given by

Pin±(n) //

λ
��

Pin±(n+ 1)

λ
��

O(n) �
� // O(n+ 1).



90 Appendix B. Bordism theories

If ρ : Q→ P is a Pin± on P , then the corresponding stable Pin± structure is
given by

. . . // Q×Pin±(n) Pin±(n+ k) //

ρ×λ
��

Q×Pin±(n) Pin±(n+ k + 1) //

ρ×λ
��

. . .

. . . // P ×O(n) O(n+ k) �
� // P ×O(n) O(n+ k + 1) �

� // . . . .

The next de�nition is taken from [DK01, p.216]. However, nice references
are also [Swi02, p.226] and [Sto15].

De�nition B.0.3 (G bordism groups). The n-th G bordism group of a to-
pological space X is the set of G bordism classes of closed singular manifolds
f : M → X of dimension n that possesses a stable G structure on their
normal bundles. The addition is given by disjoint union.

More generally, the n-th G bordism group Ωg
n(X,A) of a pair (X,A) is

the equivalence classes of singular n-dimensional manifolds f : (M,∂M) →
(X,A) with a stable G structure on its normal bundle. Two singular man-
ifolds (Mi, fi) are considered to be equivalent if there is a singular bordism
(U, f) with a stable G structure on its normal bundle such that the closed
singular manifold (M0∪∂M0U∪∂M1M1, f0∪f∪f1), obtained by proper bound-
ary identi�cations, possesses a stable G structure on its normal bundle and
is G bordant to the empty set. Again, the addition is given by disjoint union.

Remark B.0.4. Although we have used embeddings to de�ne a bordism class,
this class is independent of the used embedding. Indeed, let ι0, ι1 be two em-
beddings of a compact manifold M into some su�ciently high-dimensional
euclidean space with non-intersecting images. We denote by (M,Gι0) and
(M,Gι1) the manifold M with a chosen G structure on the bundle induced
by the embeddings. Two embeddings are ambient-isotopic if the target space
is su�ciently high-dimensional (cf. [Swi02, Theorem 12.14]) by an ambi-
ent isotopy H. This isotopy gives an isomorphism of normal bundles and
we can use this isomorphism to pull back the chosen Gι1 structure to the
stable normal bundle ν(ι0). If this structure is equivalent to Gι the bordism
classes generated by M,Gι0 and M,Gι1 will be equal. For a more detailed
explanation, the reader is re�ered to chapter II of [Sto15].

The next theorem relates the very geometric de�nition to homotopy the-
ory. Excellent references for the proof are [Swi02, p.230], [DK01, p.221�],
[Sto15]. A nice treatment of the special cases G = O,SO can be found in
[Hir12] and [tD08].

Theorem B.0.5 (Pontrjagin-Thom). The Pontrjagin-Thom construction

gives an isomorphism

ΩG
n (X,A) ∼= lim

k→∞
πk(MGk ∧X+/A+)

Several bordism theories have been studied quite successfully. However,
in this appendix we summarise the needed information for ordinary bordism
(G = O), oriented bordism (G = SO), and Spin bordism G = Spin.
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B.1. Unoriented bordism

Theorem B.1.1. [Dol56, Satz 3] The set ΩO
∗ (pt) =

⊕
n≥0 ΩO

n (pt) together

with disjoint union and Cartesian product forms a graded commutative al-

gebra over the �eld Z2.

As an algebra,

ΩO
∗
∼= Z2[{xj | j 6= 2k − 1 for k ∈ N}],

where xj = [RP j], if j is even, and xj = [P (2r − 1, s2r)] if j is odd.

Example B.1.2.

n = 0 1 2 3 4 5 6 7
ΩO
n (pt) ∼= Z2 0 Z2 0 Z2

2 Z2 Z3
2 Z2

Theorem B.1.3. [Sto15, p.108] The generalised Hurewicz map

ΩO
n (X,A)→ Hn(X,A;Z2),

[M,∂M,F ] 7→ F∗[M,∂M ],

which sends a bordism class of a singular manifold to the image of its funda-

mental class, is an epimorphism.

Theorem B.1.4. [Sto15, p.107�] For every CW-pair (X,A), the unoriented
bordism group ΩO

∗ (X,A) is -a free ΩO
∗ (pt) module, and there is a isomorphism

of graded ΩO
∗ (pt)-modules

ΩO
∗ (X,A) ∼= H∗(X,A)⊗Z2 ΩO

∗ (pt).

Moreover, two elements [Mi, ∂Mi, fi] in ΩO
∗ (X,A) agree if and only if all

generalised Stiefel-Whitney numbers

(wi1 ∪ . . . wik ∪ f ∗(x)) ∩ [Mi, ∂Mi]

agree. Here, x ∈ H ik+1(X,A;Z2) is chosen such that i1 + · · ·+ ik+1 = dim M .

B.2. Oriented bordism

Theorem B.2.1. The set ΩSO
∗ (pt) together with disjoint union and Cartesian

product forms a graded commutative ring.

Theorem B.2.2. [tD08, Theorem 21.4.2] The generalised Hurewicz map ex-

tends to an isomorphism of rings

ΩSO
∗ (pt)⊗Q ∼= H∗(BSO;Q) ∼= Q[x4j].

The generators are given [CP 2j]. The product on the left-hand side is induced

by the Cartesian products of the representatives.

Example B.2.3. [Mil74, p.203]

n = 0 1 2 3 4 5 6 7
ΩSO
n (pt) ∼= Z 0 0 0 Z Z2 0 0
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Theorem B.2.4. [Wal60] Oriented bordism is completely characterised by

the Pontrjagin number and the Stiefel-Whitney numbers. More precisely,

[M ] = 0 ∈ ΩSO
n if and only if all Stiefel-Whitney numbers and all Pontrjagin

numbers vanish.

Theorem B.2.5. [tD08, p.527] The generalised Hurewicz map

ΩSO
n (X,A)→ Hn(X,A;Z),

[M,∂M,F ] 7→ F∗[M,∂M ],

which sends a bordism class of a singular manifold to the image of its fun-

damental class is a well-de�ned homomorphism; it is neither injective nor

surjective.

B.3. Spin bordism

Theorem B.3.1. The Spin bordism coe�cient group ΩSpin
∗ (pt) together with

disjoint union and Cartesian product forms a ring.

Example B.3.2. [Mil63]

n = 0 1 2 3 4 5 6 7
ΩSpin
n (pt) ∼= Z Z2 Z2 0 Z 0 0 0

The group ΩSpin
1 (pt) is generated by [S1

Lie], the circle with the 'bad' Spin
structure, ΩSpin

2 (pt) is generated by S1
Lie×S1

Lie, and ΩSpin
4 (pt) is generated by

the Kummer surface.

Theorem B.3.3. [ABP67] A class [M ] ∈ ΩSpin
∗ (pt) is uniquely determined by

its Stiefel-Whitney numbers and its KO-Pontrjagin numbers. More precisely,

[M ] = 0 if and only if all Stiefel-Whitney numbers and all KO-Pontrjagin

classes vanish.
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Spectral Sequences

De�nition C.0.1 (spectral sequence). [McC01, p.28�] Let R be a commut-
ative ring with unit. A spectral sequence of homological type is a sequence of
bigraded chain complexes (Er

∗,∗, d
r) of R-modules, where the di�erentials are

of bidegree (−r, r − 1), and for every p, q ∈ Z and r ∈ N the groups Er+1
p,q

and Hp,q(E
r
∗,∗, d

r) are isomorphic.

De�nition C.0.2. A spectral sequence is a �rst quadrant spectral sequence
if, for every r ∈ N , we have Er

p,q = 0 as long as p < 0 or q < 0.

De�nition C.0.3 (morphism of spectral sequence). [McC01, p.65]
A morphism of spectral sequences is a sequence of bigraded chain maps
f r : Er

∗,∗ → Er
∗,∗ of bidegree (0, 0) such that for every p, q ∈ Z and r ∈ N, the

identity Hp,q(f
r) = f r+1

p,q holds.

De�nition C.0.4 (�ltration). [DK01, De�nition 9.2] A �ltration of a graded
module M∗ is an increasing sequence (Fq)q∈Z of submodules of M∗. It is said
to be grading-preserving, if for each q ∈ Z the intersections Fp,q := Fp∩Mp+q

form a �ltration of Mp+q. A �ltration is convergent if the intersection of all
Fp is 0 and the union is the whole module M∗.

De�nition C.0.5 (convergence of spectral sequence). [DK01, De�nition 9.5]
Let M∗ be a graded module. A spectral sequence converges to M∗ if the
following conditions are satis�ed:
1. For every p, q ∈ Z, there exists an r0 such that drp,q = 0 for every r ≥ r0.
(This implies that Er

p,q surjects onto E
r+1
p,q for every r ≥ r0.)

2. The graded module M∗ possesses a convergent, grading-preserving �l-
tration which satis�es Fp,q/Fp−1,q+1

∼= colim−−−→r
Er
p,q.

One often writes E2
p,q ⇒Mp+q to denote convergence.

Remark C.0.6. First quadrant spectral sequences always satisfy the �rst con-
dition of the convergence requirements. Indeed, for every r > max{p, q}, we
have drp,q = 0 because its target space is 0, and drp+r,q−r+1 = 0 because its
domain is 0. This implies Er

p,q
∼=Er+1

p,q for every r > max{p, q}.

De�nition C.0.7. [McC01, p.17�] Let Γ∗ be a graded algebra over R. We
say that Γ∗ acts on a spectral sequence if the following condition are satis�ed:
1. Γ∗ acts on the graded module Er

∗,∗.
2. Every di�erential is Γ∗-linear.
3. The Γ∗ action on Er+1

∗,∗ is induced through homology from the action of
Γ∗ on Er

∗∗.
We call such a spectral sequence a spectral sequence of Γ∗-modules.
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Let M∗ be a Γ∗-module. We say that a spectral sequence of Γ∗-modules
converges to M∗ as Γ∗-modules if it converges to M∗ and, additionally, the
chosen �ltration is Γ∗-invariant and the induced action on every Fp,q/Fp−1,q+1

agrees with the induced action on colim−−−→r
Er
p,q.

We will construct a spectral sequence approximating a homology theory
of a CW-complex. There are several approaches, we will follow the version
covered in [Swi02], where all the proofs can be found if they are not given
here. In what follows, X denotes a �ltered topological space with �ltration
(Xq)q∈Z with Xq = ∅ if q < 0 and h∗ a generalised unreduced homology
theory satisfying the axiom of disjoint union, like bordism theories.

De�nition C.0.8. Let i and j be inclusions and ∆ be the boundary operator
for the homology theory h∗. We de�ne

Zr
p,q := im[j∗ : hp+q(X

p, Xp−r)→ hp+q(X
p, Xp−1)],

Br
p,q := im[∆: hp+q+1(Xp+r−1, Xp)→ hp+q(X

p, Xp−1)],

Z∞p,q := im[j∗ : hp+q(X
p)→ hp+q(X

p, Xp−1)],

B∞p,q := im[∆: hp+q+1(X,Xp)→ hp+q(X
p, Xp−1)],

Fp,q := im[i∗ : hp+q(X
p)→ hp+q(X)].

Proposition C.0.9. For �xed p and q, the groups Br
p,q, Z

r
p,q, B

∞
p,q, and Z

∞
p,q

are subgroups of hp+q(X
p, Xp−1) and satisfy the following inclusion relations:

0 = B1
p,q ⊆ · · · ⊆ Br

p,q ⊆ Br+1
p,q ⊆ · · · ⊆ B∞p,q ⊆ Z∞p,q ⊆ · · · ⊆ Zr+1

p,q ⊆ Zr
p,q ⊆ . . .

. . . ⊆ Z1
p,q = hp+q(X

p, Xp−1).

De�nition C.0.10. For r ∈ N ∪ {∞} de�ne Er
p,q := Zr

p,q/B
r
p,q.

Lemma C.0.11. The morphisms j∗ : hp+q(X
p, Xp−r)→ hp+q(X

p, Xp−1) and
∆: hp+q(X

p, Xp−r)→ hp+q−1(Xp−r, Xp−r−1) induce an isomorphism

Zr
p,q/Z

r+1
p,q
∼= Br+1

p−r,q+r−1/B
r
p−r,q+r−1

via ∆ ◦ j−1
∗ .

De�nition C.0.12. We de�ne the di�erentials drp,q as the composition in the
diagram

Zr
p,q/B

r
p,q

// // Zr
p,q/Z

r+1
p,q

∼= // Br+1
p−r,q+r−1/B

r
p−r,q+r+1

� � // Zr
p−r,q+r−1/B

r
p−r,q+r−1

Er
p,q

drp,q // Er
p−r,q+r−1.

Proposition C.0.13.

1. ker drp,q = Zr+1
p,q /B

r
p,q and im drp,q = Br+1

p−r,q+r−1/B
r
p−r,q+r−1.

2. (Er
∗,∗, d

r) is a bigraded chain complex for every r ∈ N.
3. Er+1

∗,∗
∼= H(Er

∗,∗, d
r).
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Proposition C.0.14. The subgroups Fp,q form a convergent �ltration for

hp+q(X). Moreover, there is a natural isomorphism

Fp,q/Fp−1.q+1
∼= E∞p,q

induced by i∗ ◦ j−1
∗ , where i∗ : hp+q(X

p) → hp+q(X) and j∗ : hp+q(X
p) →

hp+q(X
p, Xp−1).

Proposition C.0.15. Zr
p,q = Z∞p,q for r > p, so we have an epimorphism

Er
p,q → Er+1

p,q . Furthermore, B∞ =
⋃
r≥1B

r
p,q and thus E∞p,q

∼= colim−−−→r
Er
p,q.

Now we restrict our consideration to the case where X is a CW-complex
and the �ltration is the skeleton �ltration.

Proposition C.0.16. There is a natural isomorphism E1
p,q
∼= Ccellp (X) ⊗

hq(pt) and under this isomorphism the di�erential d1
p,q can be described in

terms of the cellular di�erential. More precisely, the diagram

E1
p,q

d1p,q //

∼=
��

E1
p−1,q+1

∼=
��

Ccellp (X)⊗ hq(pt)
∂p⊗id // Cpcell(X)⊗ hq(pt)

commutes.

The next theorem summarises the achievements of the previous proposi-
tions.

Theorem C.0.17 (Atiyah-Hirzebruch spectral sequence). We denote with

X a CW-complex and h∗ a generalised unreduced homology theory satisfying

the axiom of disjoint union. Then there is a spectral sequence {Er
p,q, d

r} of
homological type with (E1

p,q, d
1) as described in Proposition C.0.16, E2

p,q =
Hp(X, hq(pt)), and converging to h∗(X).

In the spirit of the leitfaden of Switzer's book, enrichment of structure,
we are going to exploit further properties of this sequence.

Theorem C.0.18 (functionriality). A continuous map f : X → Y between

two CW-complexes induces a map of spectral sequences f rp,q : XE
r
p,q → YE

r
p,q,

which approximates h∗(f) : h∗(X)→ h∗(Y ).
Under the correspondence E1

p,q
∼= Ccellp (X) ⊗ hq(pt) the maps f 1

p,q corres-

pond to Ccellp (f)⊗ id : Ccellp (X)⊗ hq(pt)→ Ccellp (Y )⊗ hq(pt).

Proof. We may assume that f preserves the �ltration because the cellular
approximation theorem guarantees we can homotopy f into a cellular map
if needed. Let XZ

r
p,q,XB

r
p,q, . . . the groups de�ned in De�nition C.0.8 for

the space X and YZ
r
p,q, YB

r
p,q, . . . the groups for Y . Since f is cellular, the

diagrams

h∗(X
α, Xβ)

j∗ //

f∗
��

h∗(X
p, Xq)

f∗
��

h∗(X
α, Xβ) ∆ //

f∗
��

h∗(X
p, Xq)

f∗
��

h∗(Y
α, Y β)

j∗ // h∗(Y
p, Y q) h∗(Y

α, Y β) ∆ // h∗(Y
p, Y q)



96 Appendix C. Spectral Sequences

commutes. This implies that the chain of inclusions given in Proposition
C.0.9 is natural with respect to cellular maps. So, cellular maps de�ne
maps f rp,q between XZ

r
p,q,XB

r
p,q, . . . and YZ

r
p,q, YB

r
p,q, . . . . Thus, they in-

duce well de�ned maps f rp,q : XE
r
p,q → YE

r
p,q. The next step is to show that

{f rp,q} : {XEr
p,q, d

r} → {YEr
p,q, d

r} is a map of spectral sequence. So, we need
to verify that they are chain maps and that H(f rp,q) = f r+1

p,q .
Recall that drp,q is the composition of the three homomorphisms

Zr
p,q/B

r
p,q

// // Zr
p,q/Z

r+1
p,q

∼= // Br+1
p−r,q+r−1/B

r
p−r,q+r+1

� � // Zr
p−r,q+r−1/B

r
p−r,q+r−1.

The �rst and the third morphism obviously commute with f rp,q. A diagram
chase of

hp+q(X
p, Xp−r−1)

bb
j1∗

<<

f∗

OO

hp+q(X
p−1, Xp−r) //

∆1

99

f∗

OO

hp+q(X
p, Xp−r)

j∗ //

∆2

dd

f∗

OO

hp+q(X
p, Xp−1)

f∗

OO

hp+q−1(Xp−r, Xp−r−1)

f∗

OO

hp+q(Y
p, Xp−r−1)

bb
j1∗

<<
hp+q(Y

p−1, Y p−r) //

∆1

99

hp+q(Y
p, Y p−r)

j∗ //

∆2

dddd

hp+q(Y
p, Y p−1)

hp+q−1(Y p−r, Y p−r−1)

shows that the second morphism, induced by ∆2 ◦ j−1
∗ , commutes with f rp,q,

too. So {f rp,q} is a chain map for every �xed r.
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The commutativity of

XZ
r+1
p,q

wwww && &&

frp,q

��

H(Er
p,q) = XZ

r+1
p,q /XB

r
p,q

XB
r+1
p,q /XBrp,q

∼= //

H(frp,q)

��

XZ
r+1
p,q /XB

r+1
p,q

fr+1
p,q

��

Zr+1
p,q

wwww && &&
H(Er

p,q) = Y Z
r+1
p,q /Y B

r
p,q

Y B
r+1
p,q /Y Brp,q

∼= //
YZ

r+1
p,q /YB

r+1
p,q

shows H(f rp,q) = f r+1
p,q . Since Zr

p,q = Z∞p,q for large r, we conclude from the
previous discussion that {f rp,q} is a morphism of directed systems commuting
with f∞p,q because the following diagram

XE
∞
p,q

f∞p,q

��

XE
r
p,q

∼= //

frp,q

��

;;

XE
r+1
p,q

fr+1
p,q

��

dd

YE
∞
p,q

YE
r
p,q

∼= //

;;

YE
r+1
p,q

dd

commutes. Consequently, we have

colimr XE
r
p,q

∼= //

colim{frp,q}
��

XE
∞
p,q

f∞p,q
��

colimr YE
r
p,q

∼= //
YE
∞
p,q.

The last condition we have to verify is whether the isomorphism between
Fp,q/Fp−1,q+1 and E∞p,q is natural with respect to the morphisms induced by
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f . To this end, consider the commutative diagram

hp+q+1(X,Xp)

∂

��

∆

""

f∗

��

hp+q(X
p−1) //

i1∗

��

f∗

��

hp+q(X
p)

j∗ //

i2∗

��

f∗

��

hp+q(X
p, Xp−1)

f∗

��

hp+q(X
p)

f∗

��

hp+q+1(Y p, Y p)

∂

��

∆

""
hp+q(Y

p−1) //

i1∗

��

hp+q(Y
p)

j∗ //

i2∗

��

hp+q(Y
p, Y p−1)

hp+q(Y
p)

and recall that the isomorphism between Fp,q/Fp−1,q+1 and E∞p,q is induced
by i2∗ ◦ j−1

∗ . A diagram chase shows the desired result.
The second part of the theorem follows from

XE
1
p,q

f1p,q
��

hp+q(X
p, Xp−1)

c∗ //

f∗
��

hp+q(
∨
Sp)

(Σp)//

f∗
��

⊕hq(S0)

��

Ccellp (X)⊗ hq(pt)

Ccell(f)⊗id

��

YE
1
p,q

// hp+q(Y
p, Y p−1)

c∗ // hp+q(
∨
Sp)

(Σp)// ⊕hq(S0) Ccellp (Y )⊗ hq(pt).

Here, c : Xp → Xp/Xp−1 denotes the collapsing map and f̄ the (well-de�ned)
map induced by f on the quotient. Furthermore, Σ denotes the suspension
isomorphism on homology theory, where we identi�ed hp+q(

∨
Sp, pt) with

⊕hp+q(Sp, pt) with the help of the isomorphisms induced by the inclusions.
The suspension isomorphism is natural with respect to continuous maps be-
cause it is nothing but the Mayer-Vietoris boundary operator of the excis-
ive triad (SX,C+X,C−X), which commutes with S(f), because S(f) is a
triad-preserving continuous map. In the right square, Ccell(f) is the matrix

(ai,j), where ai,j is the degree of the map Spi ↪→
∨
Sp

f̄−→
∨
Sp � Spj .
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The attentive reader certainly has noticed that the commutativity of

h∗(X
α, Xβ)

j∗ //

f∗
��

h∗(X
p, Xq)

f∗
��

h∗(X
α, Xβ) ∆ //

f∗
��

h∗(X
p, Xq)

f∗
��

h∗(Y
α, Y β)

j∗ // h∗(Y
p, Y q), h∗(Y

α, Y β) ∆ // h∗(Y
p, Y q)

is actually everything we need. Any statement breaks down to the commut-
ativity of these two diagrams. Consequently, a collection of homomorphisms
Tαβ : h∗(X

α, Xβ)→ h∗(Y
α, Y β) commuting with all inclusions and all bound-

ary operators yields the same result.

Theorem C.0.19 (AHSS preserves trafos between homology theories). Let
T : h → h′ be a natural transformation between two homology theories. For

every CW-complex it induces a map between the resulting Atiyah Hirzebruch

spectral sequences T rp,q. On the 1-page the map is given by

T 1
p,q : E1

p,q
∼= Ccellp (X)⊗ hq(pt)

id⊗T // Ccellp (X)⊗ h′q(pt).

These induced morphisms commutes with the morphisms induced by continu-

ous maps.

Proof. As noted before, this proof is completely analogous to the proof of
Theorem C.0.18. Since T is a natural transformation between two homology
theories, it will commute with any homomorphism induced by continuous
maps. So the second part of the statement also follows.

Example C.0.20 (relations between di�erent bordisms). There are natural
transformation between di�erent bordism theories, namely, forgetting ad-
ditional structures. Example 1.2.8 shows that a manifold carries a Spin
structure if and only if it carries an orientation and a Pin± structure. So
forgetting additional structure gives natural transformations

ΩPin−

∗ (X,A)

FORGET

''
ΩSpin
∗ (X,A)

FORGET
77

FORGET

''

ΩO
∗ (X,A)

ΩSO
∗ (X,A).

FORGET
77

Theorem C.0.21. If f : X → Y is a cellular map with a cellular section σ,
then, for each k ∈ Z, there is an isomorphism between hk(X) and kerhk(f)⊕
hk(Y ) given by

hk(X)
id−hk(σ◦f)⊕hk(f)

∼=
// kerhk(f)⊕ hk(Y ).

This isomorphism de�nes a split on the corresponding Atiyah-Hirzebruch

spectral sequences(
Er
p,q, d

r
) ∼= //

(
(1)Er

p,q ⊕ (2)Er
p,q,

(1)dr ⊕ (2)dr
)
,
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where
(

(2)Er
p,q,

(2)dr
)
is the Atiyah-Hirzebruch spectral sequence induced from

h∗(Y ) and
(

(1)Er
p,q, d

r
)
is a spectral sequence converging to kerh∗(f).

Proof. Since the isomorphisms id−hk(σ◦f) = hk(id)−hk(σ◦f) are di�erences
of morphisms induced by continuous maps, they commute with all maps
induced by inclusions and all boundary operators. Thus, they induce natural
splits

hk(X
α, Xβ) ∼= kerhk(f)⊕ hk(Y α, Y β)

and thus the groups in the Atiyah-Hirzebruch spectral sequence split

Er
p,q

id−(σ◦f)rp,q⊕frp,q // ker f rp,q ⊕ YE
r
p,q

(1)Er
p,q ⊕ (2)Er

p,q .

By de�nition, (2)dr is the di�erential of the Atiyah-Hirzebruch spectral se-
quence of h∗(Y ). We de�ne (1)drp,q to be the restriction of drp,q on ker f rp,q.
Since the di�erentials are natural with respect to continuous maps, (1)drp,q
will have ker f rp−r,q+r−1 as target space. The same is true for (2)drp,q for the
same reasons. Consequently, we have a split of spectral sequences {Er

p,q, d
r} =

{(1)Er
p,q ⊕ (2)Er

p,q,
(1)dr ⊕ (2)dr}.

Corollary C.0.22. Let (Er
∗,∗, d

r) be the Atiyah-Hirzebruch spectral sequence

of a connected CW-complex. Then, all di�erentials with space Er
0,q for q ∈ Z

vanish.

Proof. Since the 0-skeleton X(0) of X is a single point, the unique map
{pt} → X(0) gives an isomorphism between Er

0,q and hq(pt) which is inverse
to the morphism induced by the constant map const : X → {pt}. Therefore
ker constr0,q = {0} ⊆ Er

0,q and the splitting in Theorem C.0.21 gives

(Er
∗,∗, d

r) ∼= (ptE
r
∗,∗ ⊕ Ẽr

∗,∗, 0⊕ d̃r),

where ptE
r
∗,∗ is the Atiyah-Hirzebruch spectral sequence for a single point

and Ẽr
p,q = Er

p,q, if p > 1 and zero otherwise. The result follows.

If the homology theory carries a product structure, the corresponding
Atiyah-Hirzebruch spectral sequence can be equipped with a product struc-
ture which approximates the given one [Swi02, p.352�]. This can be very
useful in computations. Note that the spectrum MPin+ is not a ring spec-
trum but a module spectrum over MSpin. However, for the calculation in
chapter 3 we only need that Pin− bordism is a ΩSpin

∗ (pt)-module. So, we
sketch the special case where the coe�cient ring k∗(pt) of a homology theory
with a ring structure acts on the homology theory h∗.

Theorem C.0.23. If k∗(pt) y h∗(X,A) acts naturally with respect to con-

tinuous maps and the boundary operators, then there is a k∗(pt)-action on the

corresponding Atiyah-Hirzebruch spectral sequence approximating the original

action. The di�erentials and the morphisms induced by continuous maps are

equivariant with respect to this action this action.

Under the identi�cation E1
p,q = Ccellp (X)⊗ h∗(pt), the action corresponds

to the action of k∗(pt) on the second factor.
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Proof. Again, the diagrams

k∗(pt)⊗ h∗(Xα, Xβ)
id⊗j∗ //

��

k∗(pt)⊗ h∗(Xp, Xq)

f∗
��

h∗(X
α, Xβ)

j∗ // h∗(X
p, Xq)

and
k∗(pt)⊗ h∗(Xα, Xβ) ∆ //

��

k∗(pt)⊗ h∗(Xp, Xq)

f∗
��

h∗(X
α, Xβ) ∆ // h∗(X

p, Xq)

commute, so the assertion can be checked similarly to the proof of Theorem
C.0.18.

Example C.0.24. IfM is a Spin manifold and N a Pin− manifold, thenM×N
is a Pin− manifold with a canonical Pin− structure. So, we de�ne a right
action

ΩPin−

q (X,A)× ΩSpin
p (pt)→ ΩPin−

p+q (X,A)

[M,∂M ; f ]× [N ] 7→ [M ×N ; f ◦ pr1].

The assignment is well-de�ned because if B is a Spin boundary of N1 tN2,
then (M ×B; f ◦ pr1) bounds the disjoint union of (M × N1; f ◦ pr1) and
(M × N2; f ◦ pr1). Recall that a Spin structure and its inverse yields the
same Pin− structure after forgetting the underlying orientation. So, (M ×
N2; f ◦pr1) and (M ×N2; f ◦pr1) represent the same element in ΩPin−

p+q (X,A)
and thus, the action does not depend on the representative Spin manifold. A
similar calculation shows that the action does not depend on the choice of the
representative singular Pin− manifold. It it obvious that this action is natural
with respect to morphisms induced by continuous maps. The calculation

∂[M ×N, ∂M ×N ; f ◦ pr1] = [∂(M ×N); ∂(∂M ×N); f ◦ pr1|∂(M×N)]

= [∂M ×N ; f∂M ◦ pr1]

= [N ]× [∂M ; f |∂M ]

= [N ]× ∂[M ; f ]

shows that the action commutes with the boundary operator. Consequently,
ΩSpin
∗ (pt) acts on the Atiyah-Hirzebruch spectral sequence for Pin− bordism

from the right.
This discussion generalises immediately to other bordism theories. For

example, ΩO
∗ (X,A) carries a ΩO

∗ (pt) action. The same is true for oriented
bordism and Spin bordism.





Prospects

Although the original problem was only to determine the �rst �ve Pin−

bordism groups of BO(2), a natural question arises how the higher groups
look like.

It turns out that the tools we have used so far are not appropriate. Indeed,
the Atiyah-Hirzebruch spectral sequence, which is very close to the homology
theory it approximates, allows a fast and direct computation of the associated
graded modules ⊕

p+q=k

E∞p,q

without any complicated auxiliary calculations � at least in small degrees.
Using the AHSS, one can show

ΩPin−

5 (BO(2)) ∼= ΩPin−

5 (pt)⊕ ΩPin−

5 (RP∞, pt)⊕ kerπ5

∼= Z2 ⊕ Z2 ⊕G,

where G is a group of order 4. However, the involved calculations are much
longer than the calculations in the main text. This suggests that the com-
plexity of the involved calculations should increase dramatically with the
degree. The extension problem cannot be solved conceptually either. In this
thesis, we used two approaches. The �rst one was to compare Pin− bordism
with unoriented bordism, a tactic we can use also for higher degrees. How-
ever, this tactic does not see cyclic extensions because unoriented bordism
is a Z2-vector space. To verify that ΩPin−

2 (RP∞, pt) is cyclic, we used the
classi�cation theorem for surfaces, which only works in dimension two. To
determine the isomorphism class of G, we have to be creative.

So, in order to hunt the higher bordism groups, it is advisable to use the
Adams spectral sequence. It has the disadvantage that we have to do rather
complicated auxiliary calculations to determine the second page and that it
is rather ungeometric (it uses only the homotopy type of MPin+ and not its
geometric meaning, therefore �nding generators requires additional e�ort).
But its great advantage is that it provides often � after given explicitly all
modules of the second page � e�ective methods for the determination of the
associated graded module and for the solutions of the extension problem.

Another interesting question is whether there is a geometric isomorphism

ΩPin−

n (pt)→ ΩSpin
n+1(RP∞, pt).

Recall that the isomorphism constructed in Corollary 1.4.12 maps the other
way around. A good candidate seems to be the homomorphism in Theorem
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1.4.14, but the author could not prove it. Such a di�eomorphism would be
very useful for calculations because ΩSpin

∗ (RP∞) has a multiplicative struc-
ture.
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Errata

Section 1.5 and 3.2: There are mistakes in the calculation of the Pin−

bordism coe�cients. Two statements are wrong, namely Lemma 1.5.8, this
is essential, and Lemma 1.5.10, which only a�ects the determination of the
coe�cient group ΩPin−

4 (pt) - a group not needed in the calculation in chapter
3. However, the falseness of the proof of Lemma 1.5.8 leaves Lemma 1.5.9
unproven and maybe Lemma 1.5.10, but its proof in wrong nonetheless. The
incompleteness a�ects Theorem 3.2.2, namely d2

5,0 6= 0 becomes unproven
and, therefore, the determination of ΩPin−

4 (BO(2)) is incomplete too! Luckily,
everything except Lemma 1.5.10 can be repaired so far, leaving ΩPin

4 (pt)
determined, but I have referred to the complete list, so it should be not a big
deal.

Lemma C.0.25. d2
4,1 : E2

4,1 = H4(RP∞; ΩSpin
1 ) → H2(RP∞; ΩSpin

2 ) is not

zero!

Proof. Recall that the groupE2
p,2 = Hp(RP∞; ΩPin−

2 ) is generated by
[
RP 2 × (S1

Lie)
2, pr1

]
.

Thus, forgetting the orientation gives an isomorphism SpinE
2
i,j → PinE

2
i,j

is an isomorphism for (i, j) = (4, 1) or (2, 2), see the remark about the
forget-functor at the beginning of section 3.2. Therefore, the d2

4,1 in the
AHSS approximating ΩSpin

∗ (RP∞) is not zero.

Since Lemma 1.5.8 is repaired, everything else holds as well.
Section 2.4: Corollary 2.4.2 is wrong; the pairs of numbers has to (2, 3)

and (0, 1), respectively. But this is an easy calculation that I have done
wrong in the �rst place.


